Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 444, Pages 15–46 (Mi znsl6267)  

This article is cited in 3 scientific papers (total in 3 papers)

Local boundary regularity for the Navier–Stokes equations in nonendpoint borderline Lorentz spaces

T. Barker

OxPDE, Mathematical Institute, University of Oxford, Oxford, UK
Full-text PDF (304 kB) Citations (3)
References:
Abstract: We prove local regularity up to the flat part of the boundary, for certain classes of distributional solutions that are $L_\infty L^{3,q}$ with $q$ finite. The corresponding result, for the interior case, was proven recently by Wang and Zhang, see also work by Phuc. For local regularity, up to the flat part of the boundary, $q=3$ was established by G. A. Seregin. Our result can be viewed as an extension of this to $L^{3,q}$ with $q$ finite. New scale-invariant bounds, refined pressure decay estimates near the boundary and development of a convenient new $\epsilon$-regularity criterion are central themes in providing this extension.
Key words and phrases: Navier–Stokes equations, critical spaces, local boundary regularity criteria, backward uniqueness, Lorentz space.
Received: 14.04.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 224, Issue 3, Pages 391–413
DOI: https://doi.org/10.1007/s10958-017-3424-2
Bibliographic databases:
Document Type: Article
UDC: 517
Language: English
Citation: T. Barker, “Local boundary regularity for the Navier–Stokes equations in nonendpoint borderline Lorentz spaces”, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Zap. Nauchn. Sem. POMI, 444, POMI, St. Petersburg, 2016, 15–46; J. Math. Sci. (N. Y.), 224:3 (2017), 391–413
Citation in format AMSBIB
\Bibitem{Bar16}
\by T.~Barker
\paper Local boundary regularity for the Navier--Stokes equations in nonendpoint borderline Lorentz spaces
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~45
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 444
\pages 15--46
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6267}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3509676}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 3
\pages 391--413
\crossref{https://doi.org/10.1007/s10958-017-3424-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020210726}
Linking options:
  • https://www.mathnet.ru/eng/znsl6267
  • https://www.mathnet.ru/eng/znsl/v444/p15
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:250
    Full-text PDF :54
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024