Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 443, Pages 222–233 (Mi znsl6265)  

This article is cited in 6 scientific papers (total in 6 papers)

Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results

A. V. Shchegolev

St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (193 kB) Citations (6)
References:
Abstract: Let $H$ be a subgroup of the hyperbolic unitary group $\operatorname U(2n,R,\Lambda)$ that contains the elementary block-diagonal subgroup $\operatorname{EU}(\nu,R,\Lambda)$ of type $\nu$. Assume that all self-conjugate blocks of $\nu$ are of size at least 6 (at least 4 if the form parameter $\Lambda$ satisfies the condition $R\Lambda+\Lambda R=R$) and that all non-self-conjugate blocks are of size at least 5. Then there exists a unique major exact form net of ideals $(\sigma,\Gamma)$ such that $\operatorname{EU}(\sigma,\Gamma)\le H\le\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$, where $\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$ stands for the normalizer in $\operatorname U(2n,R,\Lambda)$ of the form net subgroup $\operatorname U(\sigma,\Gamma)$ of level $(\sigma,\Gamma)$ and $\operatorname{EU}(\sigma,\Gamma)$ denotes the corresponding elementary form net subgroup. The normalizer $\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$ is described in terms of congruences.
Key words and phrases: hyperbolic unitary group, elementary subgroup, transvections, parabolic subgroups, standard automorphisms, block-diagonal subgroups, localization.
Received: 02.12.2015
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 222, Issue 4, Pages 516–523
DOI: https://doi.org/10.1007/s10958-017-3319-2
Bibliographic databases:
Document Type: Article
UDC: 513.6
Language: Russian
Citation: A. V. Shchegolev, “Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results”, Problems in the theory of representations of algebras and groups. Part 29, Zap. Nauchn. Sem. POMI, 443, POMI, St. Petersburg, 2016, 222–233; J. Math. Sci. (N. Y.), 222:4 (2017), 516–523
Citation in format AMSBIB
\Bibitem{Shc16}
\by A.~V.~Shchegolev
\paper Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results
\inbook Problems in the theory of representations of algebras and groups. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 443
\pages 222--233
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6265}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507773}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 222
\issue 4
\pages 516--523
\crossref{https://doi.org/10.1007/s10958-017-3319-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014794187}
Linking options:
  • https://www.mathnet.ru/eng/znsl6265
  • https://www.mathnet.ru/eng/znsl/v443/p222
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :44
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024