|
Zapiski Nauchnykh Seminarov POMI, 2016, Volume 443, Pages 133–146
(Mi znsl6262)
|
|
|
|
This article is cited in 8 scientific papers (total in 8 papers)
On the Grothendieck–Serre conjecture concerning principal $G$-bundles over semi-local Dedekind domains
I. A. Panina, A. K. Stavrovab a Steklov Institute of Mathematics at St. Petersburg, Fontanka 27, St. Petersburg 191023, Russia
b Department of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg, Russia
Abstract:
Let $R$ be a semi-local Dedekind domain and let $K$ be the field of fractions of $R$. Let $G$ be a reductive semisimple simply connected $R$-group scheme such that every semisimple normal $R$-subgroup scheme of $G$ contains a split $R$-torus $\mathbb G_{m,R}$. We prove that the kernel of the map
$$
H^1_{\unicode{x00E9}\unicode{x74}}(R,G)\to H^1_{\unicode{x00E9}\unicode{x74}}(K,G)
$$
induced by the inclusion of $R$ into $K$, is trivial. This result partially extends the Nisnevich theorem [10, Thm.4.2].
Key words and phrases:
reductive group, principal bundle.
Received: 02.12.2015
Citation:
I. A. Panin, A. K. Stavrova, “On the Grothendieck–Serre conjecture concerning principal $G$-bundles over semi-local Dedekind domains”, Problems in the theory of representations of algebras and groups. Part 29, Zap. Nauchn. Sem. POMI, 443, POMI, St. Petersburg, 2016, 133–146; J. Math. Sci. (N. Y.), 222:4 (2017), 453–462
Linking options:
https://www.mathnet.ru/eng/znsl6262 https://www.mathnet.ru/eng/znsl/v443/p133
|
Statistics & downloads: |
Abstract page: | 303 | Full-text PDF : | 64 | References: | 51 |
|