Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 443, Pages 106–132 (Mi znsl6261)  

This article is cited in 2 scientific papers (total in 2 papers)

Reduction theorems for triples of short root subgroups in Chevalley groups

V. V. Nesterov

Baltic State Technical University, St. Petersburg, Russia
Full-text PDF (273 kB) Citations (2)
References:
Abstract: In the present paper we prove the reduction theorems for triple short root unipotent subgroups in Chevalley groups of type $\mathrm B_\ell$ and $\mathrm C_\ell$. The main result roughly speaking is the following. Any subgroup generated by a triple of subgroups in question (apart from one case) is conjugate to a subgroup of
$$ G(\mathrm B_4,K)U(\mathrm B_5,K)\quad\mathrm{or}\quad G(\mathrm C_4,K)U(\mathrm C_5,K), $$
respectively.
Key words and phrases: Chevalley groups, root subgroups, unipotent radical.
Received: 02.06.2015
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 222, Issue 4, Pages 437–452
DOI: https://doi.org/10.1007/s10958-017-3315-6
Bibliographic databases:
Document Type: Article
UDC: 512.542.6
Language: Russian
Citation: V. V. Nesterov, “Reduction theorems for triples of short root subgroups in Chevalley groups”, Problems in the theory of representations of algebras and groups. Part 29, Zap. Nauchn. Sem. POMI, 443, POMI, St. Petersburg, 2016, 106–132; J. Math. Sci. (N. Y.), 222:4 (2017), 437–452
Citation in format AMSBIB
\Bibitem{Nes16}
\by V.~V.~Nesterov
\paper Reduction theorems for triples of short root subgroups in Chevalley groups
\inbook Problems in the theory of representations of algebras and groups. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 443
\pages 106--132
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6261}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507769}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 222
\issue 4
\pages 437--452
\crossref{https://doi.org/10.1007/s10958-017-3315-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85014741912}
Linking options:
  • https://www.mathnet.ru/eng/znsl6261
  • https://www.mathnet.ru/eng/znsl/v443/p106
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :44
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024