Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 442, Pages 75–96 (Mi znsl6244)  

This article is cited in 8 scientific papers (total in 8 papers)

Mean width of regular polytopes and expected maxima of correlated Gaussian variables

Z. Kabluchkoa, A. E. Litvakb, D. Zaporozhetsc

a Institut für Mathematische Statistik, Universität Münster, Orléans-Ring 10, 48149 Münster, Germany
b Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada
c St. Petersburg Department of the Steklov Institute of Mathematics, Fontanka 27, 191011 St. Petersburg, Russia
Full-text PDF (261 kB) Citations (8)
References:
Abstract: An old conjecture states that among all simplices inscribed in the unit sphere, the regular one has the maximal mean width. We restate this conjecture probabilistically and prove its asymptotic version. We also show that the mean width of the regular simplex with $2n$ vertices is remarkably close to the mean width of the regular crosspolytope with the same number of vertices. We establish several formulas conjectured by S. Finch on projection length $W$ of the regular cube, simplex and crosspolytope onto a line with random direction. Finally, we prove distributional limit theorems for $W$ as the dimension of the regular polytope goes to $\infty$.
Key words and phrases: Gumbel distribution, mean width, intrinsic volumes, regular simplex, regular crosspolytope, maxima of Gaussian processes, random projections, extreme value theory.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00256
Russian Academy of Sciences - Federal Agency for Scientific Organizations
The work of the third author is supported by the grant RFBR 13-01-00256 and by the Program of Fundamental Researches of Russian Academy of Sciences “Modern Problems of Fundamental Mathematics”.
Received: 30.11.2015
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 225, Issue 5, Pages 770–787
DOI: https://doi.org/10.1007/s10958-017-3492-3
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: English
Citation: Z. Kabluchko, A. E. Litvak, D. Zaporozhets, “Mean width of regular polytopes and expected maxima of correlated Gaussian variables”, Probability and statistics. Part 23, Zap. Nauchn. Sem. POMI, 442, POMI, St. Petersburg, 2015, 75–96; J. Math. Sci. (N. Y.), 225:5 (2017), 770–787
Citation in format AMSBIB
\Bibitem{KabLitZap15}
\by Z.~Kabluchko, A.~E.~Litvak, D.~Zaporozhets
\paper Mean width of regular polytopes and expected maxima of correlated Gaussian variables
\inbook Probability and statistics. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 442
\pages 75--96
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6244}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3506845}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 225
\issue 5
\pages 770--787
\crossref{https://doi.org/10.1007/s10958-017-3492-3}
Linking options:
  • https://www.mathnet.ru/eng/znsl6244
  • https://www.mathnet.ru/eng/znsl/v442/p75
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:452
    Full-text PDF :55
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024