Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 441, Pages 210–238 (Mi znsl6235)  

This article is cited in 1 scientific paper (total in 1 paper)

Invariance, quasi-invariance and unimodularity for random graphs

V. A. Kaimanovich

Department of Mathematics and Statistics, University of Ottawa, 585 King Edward, Ottawa ON, K1N 6N5, Canada
Full-text PDF (331 kB) Citations (1)
References:
Abstract: We interpret the probabilistic notion of unimodularity for measures on the space of rooted locally finite connected graphs in terms of the theory of measured equivalence relations. It turns out that the right framework for this consists in considering quasi-invariant (rather than just invariant) measures with respect to the root moving equivalence relation. We define a natural modular cocycle of this equivalence relation, and show that unimodular measures are precisely those quasi-invariant measures whose Radon–Nikodym cocycle coincides with the modular cocycle. This embeds the notion of unimodularity into the very general dynamical scheme of constructing and studying measures with a prescribed Radon–Nikodym cocycle.
Key words and phrases: random graph, space of rooted graphs, equivalence relation, unimodular measure, invariance, Radon–Nikodym cocycle.
Received: 23.11.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 219, Issue 5, Pages 747–764
DOI: https://doi.org/10.1007/s10958-016-3144-z
Bibliographic databases:
Document Type: Article
UDC: 519
Language: Russian
Citation: V. A. Kaimanovich, “Invariance, quasi-invariance and unimodularity for random graphs”, Probability and statistics. Part 22, Zap. Nauchn. Sem. POMI, 441, POMI, St. Petersburg, 2015, 210–238; J. Math. Sci. (N. Y.), 219:5 (2016), 747–764
Citation in format AMSBIB
\Bibitem{Kai15}
\by V.~A.~Kaimanovich
\paper Invariance, quasi-invariance and unimodularity for random graphs
\inbook Probability and statistics. Part~22
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 441
\pages 210--238
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6235}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3504507}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 219
\issue 5
\pages 747--764
\crossref{https://doi.org/10.1007/s10958-016-3144-z}
Linking options:
  • https://www.mathnet.ru/eng/znsl6235
  • https://www.mathnet.ru/eng/znsl/v441/p210
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024