|
Zapiski Nauchnykh Seminarov POMI, 2015, Volume 441, Pages 187–203
(Mi znsl6233)
|
|
|
|
On a problem of estimation of an infinite-dimensional parameter
V. A. Ershova, I. A. Ibragimovab a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Let $X$ be a random variable taking the positive integer values and let $\mathbf P\{X=k\}=\theta(k)$. We consider the problem of estimation of the parameter $\theta=(\theta(1),\theta(2),\dots)$ on the base of the sample $X_1,X_2,\dots,X_n$ where the observations $X_j$ are independent copies of $X$.
Key words and phrases:
non-parametric estimates, maximum likelihood estimation.
Received: 18.11.2015
Citation:
V. A. Ershov, I. A. Ibragimov, “On a problem of estimation of an infinite-dimensional parameter”, Probability and statistics. Part 22, Zap. Nauchn. Sem. POMI, 441, POMI, St. Petersburg, 2015, 187–203; J. Math. Sci. (N. Y.), 219:5 (2016), 731–742
Linking options:
https://www.mathnet.ru/eng/znsl6233 https://www.mathnet.ru/eng/znsl/v441/p187
|
|