Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 441, Pages 144–153 (Mi znsl6230)  

This article is cited in 4 scientific papers (total in 4 papers)

Discriminant and root separation of integral polynomials

F. Götzea, D. Zaporozhetsb

a Faculty of Mathematics, Bielefeld University, P.O.Box 10 01 31, 33501 Bielefeld, Germany
b St. Petersburg Department of Steklov Institute of Mathematics, Fontanka 27, 191011 St. Petersburg, Russia
Full-text PDF (187 kB) Citations (4)
References:
Abstract: Consider a random polynomial
$$ G_Q(x)=\xi_{Q,n}x^n+\xi_{Q,n-1}x^{n-1}+\dots+\xi_{Q,0} $$
with independent coefficients uniformly distributed on $2Q+1$ integer points $\{-Q,\dots,Q\}$. Denote by $D(G_Q)$ the discriminant of $G_Q$. We show that there exists a constant $C_n$, depending on $n$ only such that for all $Q\ge2$ the distribution of $D(G_Q)$ can be approximated as follows
$$ \sup_{-\infty\leq a\leq b\leq\infty}\left|\mathbf P\left(a\leq\frac{D(G_Q)}{Q^{2n-2}}\leq b\right)-\int_a^b\varphi_n(x)\,dx\right|\leq\frac{C_n}{\log Q}, $$
where $\varphi_n$ denotes the probability density function of the discriminant of a random polynomial of degree $n$ with independent coefficients which are uniformly distributed on $[-1,1]$. Let $\Delta(G_Q)$ denote the minimal distance between the complex roots of $G_Q$. As an application we show that for any $\varepsilon>0$ there exists a constant $\delta_n>0$ such that $\Delta(G_Q)$ is stochastically bounded from below/above for all sufficiently large $Q$ in the following sense
$$ \mathbf P\left(\delta_n<\Delta(G_Q)<\frac1{\delta_n}\right)>1-\varepsilon. $$
Key words and phrases: distribution of discriminants, integral polynomials, polynomial discriminant, polynomial root separation.
Funding agency Grant number
Universität Bielefeld SFB 701
Russian Foundation for Basic Research 13-01-00256
Russian Academy of Sciences - Federal Agency for Scientific Organizations
The work was done with the financial support of the Bielefeld University (Germany) in terms of project SFB 701. The second author is supported by the RFBR grant 13-01-00256 and by the program of RAS “Modern problems of theoretical mathematics”.
Received: 10.10.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 219, Issue 5, Pages 700–706
DOI: https://doi.org/10.1007/s10958-016-3139-9
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: English
Citation: F. Götze, D. Zaporozhets, “Discriminant and root separation of integral polynomials”, Probability and statistics. Part 22, Zap. Nauchn. Sem. POMI, 441, POMI, St. Petersburg, 2015, 144–153; J. Math. Sci. (N. Y.), 219:5 (2016), 700–706
Citation in format AMSBIB
\Bibitem{GotZap15}
\by F.~G\"otze, D.~Zaporozhets
\paper Discriminant and root separation of integral polynomials
\inbook Probability and statistics. Part~22
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 441
\pages 144--153
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6230}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3504502}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 219
\issue 5
\pages 700--706
\crossref{https://doi.org/10.1007/s10958-016-3139-9}
Linking options:
  • https://www.mathnet.ru/eng/znsl6230
  • https://www.mathnet.ru/eng/znsl/v441/p144
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:202
    Full-text PDF :54
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024