Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 441, Pages 73–118 (Mi znsl6228)  

Criteria of divergence almost everywhere in ergodic theory

M. J. G. Weber

IRMA, Université Louis-Pasteur et C.N.R.S., 7 rue René Descartes, 67084 Strasbourg Cedex, France
References:
Abstract: In this expository paper, we survey nowadays classical tools or criteria used in problems of convergence everywhere to build counterexamples: the Stein continuity principle, Bourgain's entropy criteria and Kakutani–Rochlin lemma, most classical device for these questions in ergodic theory. First, we state a $L^1$-version of the continuity principle and give an example of its usefulness by applying it to some famous problem on divergence almost everywhere of Fourier series. Next we particularly focus on entropy criteria in $L^p$, $2\le p\le\infty$, and provide detailed proofs. We also study the link between the associated maximal operators and the canonical Gaussian process on $L^2$. We further study the corresponding criterion in $L^p$, $1<p<2$, using properties of $p$-stable processes. Finally we consider Kakutani–Rochlin's lemma, one of the most frequently used tool in ergodic theory, by stating and proving a criterion for a.e. divergence of weighted ergodic averages.
Key words and phrases: Bourgain's entropy criteria, Stein's continuity principle, Gaussian process, stable process, metric entropy, GB set, GC set, Kakutani–Rochlin lemma.
Received: 12.11.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 219, Issue 5, Pages 651–682
DOI: https://doi.org/10.1007/s10958-016-3137-y
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: English
Citation: M. J. G. Weber, “Criteria of divergence almost everywhere in ergodic theory”, Probability and statistics. Part 22, Zap. Nauchn. Sem. POMI, 441, POMI, St. Petersburg, 2015, 73–118; J. Math. Sci. (N. Y.), 219:5 (2016), 651–682
Citation in format AMSBIB
\Bibitem{Web15}
\by M.~J.~G.~Weber
\paper Criteria of divergence almost everywhere in ergodic theory
\inbook Probability and statistics. Part~22
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 441
\pages 73--118
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6228}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3504500}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 219
\issue 5
\pages 651--682
\crossref{https://doi.org/10.1007/s10958-016-3137-y}
Linking options:
  • https://www.mathnet.ru/eng/znsl6228
  • https://www.mathnet.ru/eng/znsl/v441/p73
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :40
    References:35
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024