Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 440, Pages 187–204 (Mi znsl6221)  

This article is cited in 1 scientific paper (total in 1 paper)

On the mean square of the error term for Dedekind zeta functions

O. M. Fomenko

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (232 kB) Citations (1)
References:
Abstract: Let $K_n$ be a number field of degree $n$ over $\mathbb Q$. Denote by $D(x,K_n)$ the number of all non-zero integral ideals in $K_n$ with norm $\leq x$. The Dedekind zeta function $\zeta_{K_n}(s)$ is a meromorphic function with a simple pole at $s=1$, with residue, say, $\Lambda_n$. Define
$$ \Delta(x, K_n)=D(x, K_n)-\Lambda_n x. $$
The history of estimates of $\Delta(x,K_n)$ begins with
$$ \Delta (x, K_n)\ll x^{1-\frac1n}\qquad\text{(Weber (1896))} $$
and
$$\Delta(x, K_n)\ll x^{\frac{n-1}{n+1}}\qquad\text{(Landau (1917))}. $$
If $n>2$, then
$$ \int^x_1\Delta(y, K_n)^2\,dy\ll x^{3-\frac4n}\log^nx, $$
which is a result of Chandrasekharan and Narasimhan (1964).
In this paper the following new results are obtained.
1) For $K_4=\mathbb Q(\root4\of{m})$, $m>1$ is square-free, the author proves
$$ x^{\frac74}\ll\int^x_1\Delta(y,K_4)^2dy\ll x^{\frac74+\varepsilon}. $$

2) For $K_6$, the normal closure of a cubic field $K_3$ with the Galois group $S_3$ and discriminant $\Delta<0$, the author proves
$$ x^{\frac{11}6}\ll\int^x_1\Delta(y,K_6)^2\,dy\ll x^{2+\varepsilon}. $$
Key words and phrases: Dedekind zeta function, ideal distribution, mean values.
Received: 19.10.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 217, Issue 1, Pages 125–137
DOI: https://doi.org/10.1007/s10958-016-2961-4
Bibliographic databases:
Document Type: Article
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “On the mean square of the error term for Dedekind zeta functions”, Analytical theory of numbers and theory of functions. Part 30, Zap. Nauchn. Sem. POMI, 440, POMI, St. Petersburg, 2015, 187–204; J. Math. Sci. (N. Y.), 217:1 (2016), 125–137
Citation in format AMSBIB
\Bibitem{Fom15}
\by O.~M.~Fomenko
\paper On the mean square of the error term for Dedekind zeta functions
\inbook Analytical theory of numbers and theory of functions. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 440
\pages 187--204
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6221}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3504467}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 217
\issue 1
\pages 125--137
\crossref{https://doi.org/10.1007/s10958-016-2961-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84978174372}
Linking options:
  • https://www.mathnet.ru/eng/znsl6221
  • https://www.mathnet.ru/eng/znsl/v440/p187
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :39
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024