Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 440, Pages 138–161 (Mi znsl6218)  

This article is cited in 9 scientific papers (total in 9 papers)

Normalized incomplete beta function: log-concavity in parameters and other properties

D. B. Karpab

a Far Eastern Federal University, 8 Sukhanova street, Vladivostok, 690950, Russia
b Institute of Applied Mathematics, FEBRAS, 7 Radio Street, Vladivostok, 690041, Russia
Full-text PDF (215 kB) Citations (9)
References:
Abstract: Logarithmic concavity/convexity in parameters of the normalized incomplete beta function has been demonstrated by Finner and Roters in 1997 as a corollary of a rather difficult result based on generalized reproductive property of certain distributions. In the first part of this paper we give a direct analytic proof of the logarithmic concavity/convexity mentioned above. In the second part, we strengthen these results by proving that power series coefficients of the generalized Turán determinants formed by the parameter shifts of the normalized incomplete beta function have constant sign under some additional restrictions. Our method also leads to various other new facts which may be of independent interest. In particular, we establish linearization formulas and two-sided bounds for the above mentioned Turán determinants. Further, we find two identities of combinatorial type which we believe to be new.
Key words and phrases: incomplete beta function, Gauss hypergeometric function, log-concavity, combinatorial identity.
Received: 21.09.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 217, Issue 1, Pages 91–107
DOI: https://doi.org/10.1007/s10958-016-2958-z
Bibliographic databases:
Document Type: Article
UDC: 517.58
Language: English
Citation: D. B. Karp, “Normalized incomplete beta function: log-concavity in parameters and other properties”, Analytical theory of numbers and theory of functions. Part 30, Zap. Nauchn. Sem. POMI, 440, POMI, St. Petersburg, 2015, 138–161; J. Math. Sci. (N. Y.), 217:1 (2016), 91–107
Citation in format AMSBIB
\Bibitem{Kar15}
\by D.~B.~Karp
\paper Normalized incomplete beta function: log-concavity in parameters and other properties
\inbook Analytical theory of numbers and theory of functions. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 440
\pages 138--161
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6218}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3504464}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 217
\issue 1
\pages 91--107
\crossref{https://doi.org/10.1007/s10958-016-2958-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84978154010}
Linking options:
  • https://www.mathnet.ru/eng/znsl6218
  • https://www.mathnet.ru/eng/znsl/v440/p138
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :53
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024