Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 440, Pages 43–56 (Mi znsl6212)  

This article is cited in 2 scientific papers (total in 2 papers)

Distortion theorems for circumferentially mean $p$-valent functions

V. N. Dubininab

a Far Eastern Federal University, Vladivostok, Russia
b Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
Full-text PDF (214 kB) Citations (2)
References:
Abstract: By symmetrization approach some distortion theorems for circumferentially mean $p$-valent functions are proved. We consider functions with a zero of order $p$ at the origin, functions without zeros and functions with Montel's normalization. All equality cases in the obtained estimates are established.
Key words and phrases: circumferentially mean p-valent function, the Chebyshev polynomial, symmetrization.
Funding agency Grant number
Russian Science Foundation 14-11-00022
Received: 01.06.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 217, Issue 1, Pages 28–36
DOI: https://doi.org/10.1007/s10958-016-2952-5
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. N. Dubinin, “Distortion theorems for circumferentially mean $p$-valent functions”, Analytical theory of numbers and theory of functions. Part 30, Zap. Nauchn. Sem. POMI, 440, POMI, St. Petersburg, 2015, 43–56; J. Math. Sci. (N. Y.), 217:1 (2016), 28–36
Citation in format AMSBIB
\Bibitem{Dub15}
\by V.~N.~Dubinin
\paper Distortion theorems for circumferentially mean $p$-valent functions
\inbook Analytical theory of numbers and theory of functions. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 440
\pages 43--56
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6212}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3504458}
\elib{https://elibrary.ru/item.asp?id=27016721}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 217
\issue 1
\pages 28--36
\crossref{https://doi.org/10.1007/s10958-016-2952-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84978160649}
Linking options:
  • https://www.mathnet.ru/eng/znsl6212
  • https://www.mathnet.ru/eng/znsl/v440/p43
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:223
    Full-text PDF :58
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024