Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 440, Pages 8–35 (Mi znsl6210)  

This article is cited in 5 scientific papers (total in 5 papers)

A nonperiodic analogue of the Akhiezer–Krein–Favard operators

O. L. Vinogradov, A. V. Gladkaya

St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (293 kB) Citations (5)
References:
Abstract: In what follows, $\sigma>0$, $m,r\in\mathbb N$, $m\geqslant r$, $\mathbf S_{\sigma,m}$ is the space of splines of order $m$ and minimal defect with nodes $\frac{j\pi}\sigma$ ($j\in\mathbb Z$), $A_{\sigma,m}(f)_p$ is the best approximation of a function $f$ by the set $\mathbf S_{\sigma,m}$ in the space $L_p(\mathbb R)$. It is known that for $p=1,+\infty$
\begin{equation} \sup_{f\in W^{(r)}_p(\mathbb R)}\frac{A_{\sigma,m}(f)_p}{\|f^{(r)}\|_p}=\frac{\mathcal K_r}{\sigma^r}.\end{equation}
In this paper we construct linear operators $\mathcal X_{\sigma,r,m}$ with their values in $\mathbf S_{\sigma,m}$, such that for all $p\in[1,+\infty]$ and $f\in W_p^{(r)}(\mathbb R)$
$$ \|f-\mathcal X_{\sigma,r,m}(f)\|_p\leqslant\frac{\mathcal K_r}{\sigma^r}\|f^{(r)}\|_p. $$
So we establish the possibility to achieve the upper bounds in (1) by linear methods of approximation, which was unknown before.
Key words and phrases: best approximation, nonperiodic splines, the Akhiezer–Krein–Favard operator.
Received: 21.09.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 217, Issue 1, Pages 3–22
DOI: https://doi.org/10.1007/s10958-016-2950-7
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. L. Vinogradov, A. V. Gladkaya, “A nonperiodic analogue of the Akhiezer–Krein–Favard operators”, Analytical theory of numbers and theory of functions. Part 30, Zap. Nauchn. Sem. POMI, 440, POMI, St. Petersburg, 2015, 8–35; J. Math. Sci. (N. Y.), 217:1 (2016), 3–22
Citation in format AMSBIB
\Bibitem{VinGla15}
\by O.~L.~Vinogradov, A.~V.~Gladkaya
\paper A nonperiodic analogue of the Akhiezer--Krein--Favard operators
\inbook Analytical theory of numbers and theory of functions. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 440
\pages 8--35
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6210}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3504456}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 217
\issue 1
\pages 3--22
\crossref{https://doi.org/10.1007/s10958-016-2950-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84978173187}
Linking options:
  • https://www.mathnet.ru/eng/znsl6210
  • https://www.mathnet.ru/eng/znsl/v440/p8
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024