|
Zapiski Nauchnykh Seminarov POMI, 2015, Volume 440, Pages 8–35
(Mi znsl6210)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
A nonperiodic analogue of the Akhiezer–Krein–Favard operators
O. L. Vinogradov, A. V. Gladkaya St. Petersburg State University, St. Petersburg, Russia
Abstract:
In what follows, $\sigma>0$, $m,r\in\mathbb N$, $m\geqslant r$, $\mathbf S_{\sigma,m}$ is the space of splines of order $m$ and minimal defect with nodes $\frac{j\pi}\sigma$ ($j\in\mathbb Z$), $A_{\sigma,m}(f)_p$ is the best approximation of a function $f$ by the set $\mathbf S_{\sigma,m}$ in the space $L_p(\mathbb R)$. It is known that for $p=1,+\infty$
\begin{equation}
\sup_{f\in W^{(r)}_p(\mathbb R)}\frac{A_{\sigma,m}(f)_p}{\|f^{(r)}\|_p}=\frac{\mathcal K_r}{\sigma^r}.\end{equation}
In this paper we construct linear operators $\mathcal X_{\sigma,r,m}$ with their values in $\mathbf S_{\sigma,m}$, such that for all $p\in[1,+\infty]$ and $f\in W_p^{(r)}(\mathbb R)$
$$
\|f-\mathcal X_{\sigma,r,m}(f)\|_p\leqslant\frac{\mathcal K_r}{\sigma^r}\|f^{(r)}\|_p.
$$
So we establish the possibility to achieve the upper bounds in (1) by linear methods of approximation, which was unknown before.
Key words and phrases:
best approximation, nonperiodic splines, the Akhiezer–Krein–Favard operator.
Received: 21.09.2015
Citation:
O. L. Vinogradov, A. V. Gladkaya, “A nonperiodic analogue of the Akhiezer–Krein–Favard operators”, Analytical theory of numbers and theory of functions. Part 30, Zap. Nauchn. Sem. POMI, 440, POMI, St. Petersburg, 2015, 8–35; J. Math. Sci. (N. Y.), 217:1 (2016), 3–22
Linking options:
https://www.mathnet.ru/eng/znsl6210 https://www.mathnet.ru/eng/znsl/v440/p8
|
|