|
Zapiski Nauchnykh Seminarov POMI, 2007, Volume 348, Pages 40–97
(Mi znsl62)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
The Cauchy–Dirichlet problem for the heat equation in Besov spaces
E. Zadrzyńskaa, W. Zajączkowskib a Warsaw University of Technology
b Institute of Mathematics of the Polish Academy of Sciences
Abstract:
In the paper, we study the solvability in anisotropic spaces
$B_{p,q}^{{\sigma\over2}\!,\sigma}(\Omega^T)$, $\sigma\in\mathbb R_+$,
$p,q\in(1,\infty)$, of the heat equation $u_t-\Delta u=f$ in
$\Omega^T\equiv(0,T)\times\Omega$ with the boundary and initial conditions:
$u=g$ on $S^T$, $u|_{t=0}=u_0$ in $\Omega$, where $S$ is the boundary of
a bounded domain $\Omega\subset\mathbb R^n$.
Received: 12.10.2007
Citation:
E. Zadrzyńska, W. Zajączkowski, “The Cauchy–Dirichlet problem for the heat equation in Besov spaces”, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Zap. Nauchn. Sem. POMI, 348, POMI, St. Petersburg, 2007, 40–97; J. Math. Sci. (N. Y.), 152:5 (2008), 638–673
Linking options:
https://www.mathnet.ru/eng/znsl62 https://www.mathnet.ru/eng/znsl/v348/p40
|
Statistics & downloads: |
Abstract page: | 329 | Full-text PDF : | 175 | References: | 44 |
|