Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 439, Pages 47–58 (Mi znsl6199)  

This article is cited in 1 scientific paper (total in 1 paper)

The additive Peaceman–Rachford method

N. I. Gorbenkoab, V. P. Il'inab

a Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (165 kB) Citations (1)
References:
Abstract: A new version of the parallel alternating direction implicit (ADI) method by Peaceman and Rachford for solving systems of linear algebraic equations with positive-definite coefficient matrices represented as sums of two commuting terms is suggested. The algorithms considered are suited for solving two-dimensional grid boundary-value problems with separable variables, as well as the Sylvester and Lyapunov matrix equations. The approach to parallelization speed up proposed in the paper is based on representing rational functions as sums of partial fractions. An additive version of the factorized ADI method for solving Sylvester's equation is described. Estimates of the speed up obtained by increasing the number of computational units are presented. These estimates demonstrate a potential advantage of using the additive algorithms when implemented on a supercomputer with large number of processors or cores.
Key words and phrases: Peaceman–Rachford method, optimal set of parameters, commutative matrices, rational function, partial fraction, parallel algorithms, two-dimensional boundary value problems.
Funding agency Grant number
Russian Science Foundation 14-11-00485
Russian Foundation for Basic Research 14-07-00128
Received: 23.11.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 216, Issue 6, Pages 753–760
DOI: https://doi.org/10.1007/s10958-016-2939-2
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: N. I. Gorbenko, V. P. Il'in, “The additive Peaceman–Rachford method”, Computational methods and algorithms. Part XXVIII, Zap. Nauchn. Sem. POMI, 439, POMI, St. Petersburg, 2015, 47–58; J. Math. Sci. (N. Y.), 216:6 (2016), 753–760
Citation in format AMSBIB
\Bibitem{GorIli15}
\by N.~I.~Gorbenko, V.~P.~Il'in
\paper The additive Peaceman--Rachford method
\inbook Computational methods and algorithms. Part~XXVIII
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 439
\pages 47--58
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6199}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3502381}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 216
\issue 6
\pages 753--760
\crossref{https://doi.org/10.1007/s10958-016-2939-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84976260225}
Linking options:
  • https://www.mathnet.ru/eng/znsl6199
  • https://www.mathnet.ru/eng/znsl/v439/p47
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:409
    Full-text PDF :112
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024