Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 439, Pages 26–37 (Mi znsl6197)  

This article is cited in 3 scientific papers (total in 3 papers)

On divisibility for the permanents of $(\pm1)$-matrices

M. V. Budrevich, A. E. Guterman, K. A. Taranin

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (203 kB) Citations (3)
References:
Abstract: The classical results by Kräuter and Seifter concerning the divisibility of permanents for $(\pm1)$-matrices by large powers of $2$ are useful in testing whether the permanent is a nonvanishing function. In this paper, a new approach to this problem, which allows one to obtain a short combinatorial proof of the results by Kräuter and Seifter, is suggested.
Key words and phrases: permanent, $\pm1$-matrices, divisibility.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation МД-962.2014.1
Russian Foundation for Basic Research 15-01-01132
15-31-20329
Received: 10.11.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 216, Issue 6, Pages 738–745
DOI: https://doi.org/10.1007/s10958-016-2937-4
Bibliographic databases:
Document Type: Article
UDC: 512.643
Language: Russian
Citation: M. V. Budrevich, A. E. Guterman, K. A. Taranin, “On divisibility for the permanents of $(\pm1)$-matrices”, Computational methods and algorithms. Part XXVIII, Zap. Nauchn. Sem. POMI, 439, POMI, St. Petersburg, 2015, 26–37; J. Math. Sci. (N. Y.), 216:6 (2016), 738–745
Citation in format AMSBIB
\Bibitem{BudGutTar15}
\by M.~V.~Budrevich, A.~E.~Guterman, K.~A.~Taranin
\paper On divisibility for the permanents of $(\pm1)$-matrices
\inbook Computational methods and algorithms. Part~XXVIII
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 439
\pages 26--37
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6197}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3502379}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 216
\issue 6
\pages 738--745
\crossref{https://doi.org/10.1007/s10958-016-2937-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84976320678}
Linking options:
  • https://www.mathnet.ru/eng/znsl6197
  • https://www.mathnet.ru/eng/znsl/v439/p26
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024