Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 438, Pages 7–21 (Mi znsl6180)  

This article is cited in 5 scientific papers (total in 5 papers)

On inverse dynamical and spectral problems for the wave and Schrödinger equations on finite trees. The leaf peeling method

S. A. Avdonina, V. S. Mikhaylovbc, K. B. Nurtazinad

a Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK 99775-6660, USA
b St. Petersburg Department of the Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
c St. Petersburg State University, Faculty of Physics, University Embankment 7-9, St. Petersburg 199034, Russia
d L. N. Gumilyov Eurasian National University, 2 Satpayev Str., Astana, 010008, Kazakhstan
Full-text PDF (206 kB) Citations (5)
References:
Abstract: Interest in inverse dynamical, spectral and scattering problems for differential equations on graphs is motivated by possible applications to nano-electronics and quantum waveguides and by a variety of other classical and quantum applications. Recently a new effective leaf peeling method has been proposed by S. Avdonin and P. Kurasov for solving inverse problems on trees (graphs without cycles). It allows recalculating efficiently the inverse data from the original tree to the smaller trees, ‘removing’ leaves step by step up to the rooted edge. In this paper we describe the main step of the spectral and dynamical versions of the peeling algorithm – recalculating the inverse data for the ‘peeled tree’.
Key words and phrases: inverse problem, leaf peeling method, ODE on graphs.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan 4290/GF4
National Science Foundation DMS 1411564
Russian Foundation for Basic Research 14-01-00535
14-01-31388
Saint Petersburg State University 11.38.263.2014
This research was supported in part by the Ministry of Education and Science of Republic of Kazakhstan, grant no. 4290/GF4. S. Avdonin was supported by NSF grant DMS 1411564. V. Mikhaylov was supported by RFBR 14-01-00535, RFBR 14-01-31388 and NIR SPbGU 11.38.263.2014.
Received: 15.06.2015
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 224, Issue 1, Pages 1–10
DOI: https://doi.org/10.1007/s10958-017-3388-2
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: S. A. Avdonin, V. S. Mikhaylov, K. B. Nurtazina, “On inverse dynamical and spectral problems for the wave and Schrödinger equations on finite trees. The leaf peeling method”, Mathematical problems in the theory of wave propagation. Part 45, Zap. Nauchn. Sem. POMI, 438, POMI, St. Petersburg, 2015, 7–21; J. Math. Sci. (N. Y.), 224:1 (2017), 1–10
Citation in format AMSBIB
\Bibitem{AvdMikNur15}
\by S.~A.~Avdonin, V.~S.~Mikhaylov, K.~B.~Nurtazina
\paper On inverse dynamical and spectral problems for the wave and Schr\"odinger equations on finite trees. The leaf peeling method
\inbook Mathematical problems in the theory of wave propagation. Part~45
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 438
\pages 7--21
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6180}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3501063}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 1
\pages 1--10
\crossref{https://doi.org/10.1007/s10958-017-3388-2}
Linking options:
  • https://www.mathnet.ru/eng/znsl6180
  • https://www.mathnet.ru/eng/znsl/v438/p7
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:244
    Full-text PDF :64
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025