Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 437, Pages 131–144 (Mi znsl6176)  

This article is cited in 5 scientific papers (total in 5 papers)

On a class of operator algebras generated by a family of partial isometries

A. Yu. Kuznetsova

Institute of Physics, Kazan (Volga region) Federal University, Kazan, Russia
Full-text PDF (237 kB) Citations (5)
References:
Abstract: The paper provides a short overview of a series of articles devoted to the $C^*$-algebra generated by a self-mapping on a countable set. Such an algebra can be seen as a representation of the universal $C^*$-algebra generated by the family of partial isometries satisfying a set of conditions. These conditions are determined by the initial mapping.
Key words and phrases: $C^* $-algebra, partial isometry, covariant system, graded $C^*$-algebra.
Received: 10.10.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 216, Issue 1, Pages 84–93
DOI: https://doi.org/10.1007/s10958-016-2889-8
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. Yu. Kuznetsova, “On a class of operator algebras generated by a family of partial isometries”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Zap. Nauchn. Sem. POMI, 437, POMI, St. Petersburg, 2015, 131–144; J. Math. Sci. (N. Y.), 216:1 (2016), 84–93
Citation in format AMSBIB
\Bibitem{Kuz15}
\by A.~Yu.~Kuznetsova
\paper On a~class of operator algebras generated by a~family of partial isometries
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XXVI. Representation theory, dynamical systems, combinatorial methods
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 437
\pages 131--144
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6176}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3499911}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 216
\issue 1
\pages 84--93
\crossref{https://doi.org/10.1007/s10958-016-2889-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969849502}
Linking options:
  • https://www.mathnet.ru/eng/znsl6176
  • https://www.mathnet.ru/eng/znsl/v437/p131
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :48
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024