Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 437, Pages 100–130 (Mi znsl6175)  

This article is cited in 4 scientific papers (total in 4 papers)

On ergodic decompositions related to the Kantorovich problem

D. A. Zaev

Department of Mathematics, National Research University "Higher School of Economics", Moscow, Russia
Full-text PDF (309 kB) Citations (4)
References:
Abstract: Let $X$ be a Polish space, $\mathcal P(X)$ be the set of Borel probability measures on $X$, and $T\colon X\to X$ be a homeomorphism. We prove that for the simplex $\mathrm{Dom}\subseteq\mathcal P(X)$ of all $T$-invariant measures, the Kantorovich metric on $\mathrm{Dom}$ can be reconstructed from its values on the set of extreme points. This fact is closely related to the following result: the invariant optimal transportation plan is a mixture of invariant optimal transportation plans between extreme points of the simplex. The latter result can be generalized to the case of the Kantorovich problem with additional linear constraints and the class of ergodic decomposable simplices.
Key words and phrases: Kantorovich problem, ergodic decomposition, Markov kernel.
Received: 29.09.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 216, Issue 1, Pages 65–83
DOI: https://doi.org/10.1007/s10958-016-2888-9
Bibliographic databases:
Document Type: Article
UDC: 517.972
Language: Russian
Citation: D. A. Zaev, “On ergodic decompositions related to the Kantorovich problem”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Zap. Nauchn. Sem. POMI, 437, POMI, St. Petersburg, 2015, 100–130; J. Math. Sci. (N. Y.), 216:1 (2016), 65–83
Citation in format AMSBIB
\Bibitem{Zae15}
\by D.~A.~Zaev
\paper On ergodic decompositions related to the Kantorovich problem
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XXVI. Representation theory, dynamical systems, combinatorial methods
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 437
\pages 100--130
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6175}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3499910}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 216
\issue 1
\pages 65--83
\crossref{https://doi.org/10.1007/s10958-016-2888-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969791827}
Linking options:
  • https://www.mathnet.ru/eng/znsl6175
  • https://www.mathnet.ru/eng/znsl/v437/p100
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:227
    Full-text PDF :54
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024