|
Zapiski Nauchnykh Seminarov POMI, 2015, Volume 436, Pages 189–198
(Mi znsl6167)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Several remarks on groups of automorphisms of free groups
Yu. A. Neretinabcd a State Scientific Center of the Russian Federation - Institute for Theoretical and Experimental Physics, Moscow, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
d University of Vienna, Vienna, Austria
Abstract:
Let $\mathbb G$ be the group of automorphisms of a free group $F_\infty$ of infinite order. Let $\mathbb H$ be the stabilizer of the first $m$ generators of $F_\infty$. We show that the double cosets $\Gamma_m=\mathbb{H\setminus G/H}$ admit a natural semigroup structure. For any compact group $K$, the semigroup $\Gamma_m$ acts in the space $L^2$ on the product of $m$ copies of $K$.
Key words and phrases:
free group, infinite symmetric group, double cosets, conjugacy classes, infinite-dimensional groups.
Received: 22.07.2015
Citation:
Yu. A. Neretin, “Several remarks on groups of automorphisms of free groups”, Representation theory, dynamical systems, combinatorial methods. Part XXV, Zap. Nauchn. Sem. POMI, 436, POMI, St. Petersburg, 2015, 189–198; J. Math. Sci. (N. Y.), 215:6 (2016), 748–754
Linking options:
https://www.mathnet.ru/eng/znsl6167 https://www.mathnet.ru/eng/znsl/v436/p189
|
Statistics & downloads: |
Abstract page: | 359 | Full-text PDF : | 73 | References: | 62 |
|