Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 435, Pages 168–177 (Mi znsl6156)  

This article is cited in 4 scientific papers (total in 4 papers)

Width of extraspecial unipotent radical with respect to root elements

I. M. Pevzner

Herzen State Pedagogical University of Russia, St. Petersburg, Russia
Full-text PDF (176 kB) Citations (4)
References:
Abstract: Let $G=G(\Phi,K)$ be a Chevalley group of type $Ф$ over a field $K$, where $\Phi$ is a simply-laced root system. We study the extraspecial unipotent radical of $G$ and prove that any its element is a product of not more than three root elements. Moreover, we prove that any element of the radical is, possibly after a conjugation by an element of the Levi subgroup, a product of six elementary root elements.
Key words and phrases: Сhevalley groups, extraspecial unipotent radical, width of group, root elements.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00820-а
12-01-00947-а
Received: 01.10.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 219, Issue 4, Pages 598–603
DOI: https://doi.org/10.1007/s10958-016-3130-5
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: I. M. Pevzner, “Width of extraspecial unipotent radical with respect to root elements”, Problems in the theory of representations of algebras and groups. Part 28, Zap. Nauchn. Sem. POMI, 435, POMI, St. Petersburg, 2015, 168–177; J. Math. Sci. (N. Y.), 219:4 (2016), 598–603
Citation in format AMSBIB
\Bibitem{Pev15}
\by I.~M.~Pevzner
\paper Width of extraspecial unipotent radical with respect to root elements
\inbook Problems in the theory of representations of algebras and groups. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 435
\pages 168--177
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6156}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3493622}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 219
\issue 4
\pages 598--603
\crossref{https://doi.org/10.1007/s10958-016-3130-5}
Linking options:
  • https://www.mathnet.ru/eng/znsl6156
  • https://www.mathnet.ru/eng/znsl/v435/p168
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :45
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024