Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 435, Pages 113–162 (Mi znsl6154)  

This article is cited in 11 scientific papers (total in 11 papers)

On Schur $2$-groups

M. Muzychuka, I. Ponomarenkob

a Netanya Academic College, Netanya, Israel
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: A finite group $G$ is called a Schur group, if any Schur ring over $G$ is the transitivity module of a point stabilizer in a subgroup of $\operatorname{Sym}(G)$ that contains all right translations. We complete a classification of abelian Schur $2$-groups by proving that the group $\mathbb Z_2\times\mathbb Z_{2^n}$ is Schur. We also prove that any non-abelian Schur $2$-group of order larger than $32$ is dihedral (the Schur $2$-groups of smaller orders are known). Finally, in the dihedral case, we study Schur rings of rank at most $5$, and show that the unique obstacle here is a hypothetical S-ring of rank $5$ associated with a divisible difference set.
Key words and phrases: S-ring, Schur group, difference set.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00156 А
Received: 28.04.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 219, Issue 4, Pages 565–594
DOI: https://doi.org/10.1007/s10958-016-3128-z
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: M. Muzychuk, I. Ponomarenko, “On Schur $2$-groups”, Problems in the theory of representations of algebras and groups. Part 28, Zap. Nauchn. Sem. POMI, 435, POMI, St. Petersburg, 2015, 113–162; J. Math. Sci. (N. Y.), 219:4 (2016), 565–594
Citation in format AMSBIB
\Bibitem{MuzPon15}
\by M.~Muzychuk, I.~Ponomarenko
\paper On Schur $2$-groups
\inbook Problems in the theory of representations of algebras and groups. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 435
\pages 113--162
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6154}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3493620}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 219
\issue 4
\pages 565--594
\crossref{https://doi.org/10.1007/s10958-016-3128-z}
Linking options:
  • https://www.mathnet.ru/eng/znsl6154
  • https://www.mathnet.ru/eng/znsl/v435/p113
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:167
    Full-text PDF :47
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024