Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 434, Pages 82–90 (Mi znsl6143)  

Sharp Bernstein type inequalities for splines in the mean square metrics

O. L. Vinogradov

St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: We give an elementary proof of the sharp Bernstein type inequality
$$ \|f^{(s)}\|_2\le\frac{n^s}{2^s}\left(\frac{\mathcal K_{2r+1-2s}}{\mathcal K_{2r+1}}\right)^{1/2}\|\delta^s_\frac\pi n f\|_2. $$
Here $n,r,s\in\mathbb N$, $f$ is a $2\pi$-periodic spline of order $r$ and of minimal defect with nodes $\frac{j\pi}n$ ($j\in\mathbb Z$), $\delta^s_h$ is the difference operator of order $s$ with step $h$, and the $\mathcal K_m$ are the Favard constants. A similar inequality for the space $L_2(\mathbb R)$ is also established.
Key words and phrases: Bernstein inequality, exponential splines.
Received: 20.04.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 215, Issue 5, Pages 595–600
DOI: https://doi.org/10.1007/s10958-016-2865-3
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: O. L. Vinogradov, “Sharp Bernstein type inequalities for splines in the mean square metrics”, Investigations on linear operators and function theory. Part 43, Zap. Nauchn. Sem. POMI, 434, POMI, St. Petersburg, 2015, 82–90; J. Math. Sci. (N. Y.), 215:5 (2016), 595–600
Citation in format AMSBIB
\Bibitem{Vin15}
\by O.~L.~Vinogradov
\paper Sharp Bernstein type inequalities for splines in the mean square metrics
\inbook Investigations on linear operators and function theory. Part~43
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 434
\pages 82--90
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6143}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3493701}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 215
\issue 5
\pages 595--600
\crossref{https://doi.org/10.1007/s10958-016-2865-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84965066773}
Linking options:
  • https://www.mathnet.ru/eng/znsl6143
  • https://www.mathnet.ru/eng/znsl/v434/p82
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024