|
Zapiski Nauchnykh Seminarov POMI, 2015, Volume 434, Pages 82–90
(Mi znsl6143)
|
|
|
|
Sharp Bernstein type inequalities for splines in the mean square metrics
O. L. Vinogradov St. Petersburg State University, St. Petersburg, Russia
Abstract:
We give an elementary proof of the sharp Bernstein type inequality
$$
\|f^{(s)}\|_2\le\frac{n^s}{2^s}\left(\frac{\mathcal K_{2r+1-2s}}{\mathcal K_{2r+1}}\right)^{1/2}\|\delta^s_\frac\pi n f\|_2.
$$
Here $n,r,s\in\mathbb N$, $f$ is a $2\pi$-periodic spline of order $r$ and of minimal defect with nodes $\frac{j\pi}n$ ($j\in\mathbb Z$), $\delta^s_h$ is the difference operator of order $s$ with step $h$, and the $\mathcal K_m$ are the Favard constants. A similar inequality for the space $L_2(\mathbb R)$ is also established.
Key words and phrases:
Bernstein inequality, exponential splines.
Received: 20.04.2015
Citation:
O. L. Vinogradov, “Sharp Bernstein type inequalities for splines in the mean square metrics”, Investigations on linear operators and function theory. Part 43, Zap. Nauchn. Sem. POMI, 434, POMI, St. Petersburg, 2015, 82–90; J. Math. Sci. (N. Y.), 215:5 (2016), 595–600
Linking options:
https://www.mathnet.ru/eng/znsl6143 https://www.mathnet.ru/eng/znsl/v434/p82
|
|