Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 434, Pages 68–81 (Mi znsl6142)  

This article is cited in 2 scientific papers (total in 2 papers)

Blaschke product for a Hilbert space with Schwarz–Pick kernel

I. V. Videnskii

St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (210 kB) Citations (2)
References:
Abstract: For an analog of a Blaschke product for a Hilbert space with Schwarz–Pick kernel (this is a wider class than the class of Hilbert spaces with Nevanlinna–Pick kernel), it is proved that only finitely many elementary multipliers may have zeros on a fixed compact set. It is proved also that the partial Blaschke products multiplied by an appropriate reproducing kernel converge in the Hilbert space. These abstract theorems are applied to the weighted Hardy spaces in the unit disk and to the Drury–Arveson spaces.
Key words and phrases: Blaschke product, reproducing kernel, multipliers.
Received: 03.08.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 215, Issue 5, Pages 585–594
DOI: https://doi.org/10.1007/s10958-016-2864-4
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: I. V. Videnskii, “Blaschke product for a Hilbert space with Schwarz–Pick kernel”, Investigations on linear operators and function theory. Part 43, Zap. Nauchn. Sem. POMI, 434, POMI, St. Petersburg, 2015, 68–81; J. Math. Sci. (N. Y.), 215:5 (2016), 585–594
Citation in format AMSBIB
\Bibitem{Vid15}
\by I.~V.~Videnskii
\paper Blaschke product for a~Hilbert space with Schwarz--Pick kernel
\inbook Investigations on linear operators and function theory. Part~43
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 434
\pages 68--81
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6142}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3493700}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 215
\issue 5
\pages 585--594
\crossref{https://doi.org/10.1007/s10958-016-2864-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84965032290}
Linking options:
  • https://www.mathnet.ru/eng/znsl6142
  • https://www.mathnet.ru/eng/znsl/v434/p68
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :70
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024