Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 433, Pages 156–185 (Mi znsl6131)  

This article is cited in 4 scientific papers (total in 4 papers)

Matrix factorization for solutions of the Yang–Baxter equation

S. E. Derkachova, D. I. Chicherinb

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Laboratoire d'Annecy-le-Vieux de Physique Théorique, LAPTH, CNRS, UMR 5108, associée á l'Université de Savoie, B.P. 110, F-74941 Annecy-le-Vieux, France
Full-text PDF (327 kB) Citations (4)
References:
Abstract: We study solutions of the Yang–Baxter equation on a tensor product of an arbitrary finite-dimensional and an arbitrary infinite-dimensional representations of the rank one symmetry algebra. We consider the cases of the Lie algebra $sl_2$, the modular double (trigonometric deformation) and the Sklyanin algebra (elliptic deformation). The solutions are matrices with operator entries. The matrix elements are differential operators in the case of $sl_2$, finite-difference operators with trigonometric coefficients in the case of the modular double or finite-difference operators with coefficients constructed out of Jacobi theta functions in the case of the Sklyanin algebra. We find a new factorized form of the rational, trigonometric, and elliptic solutions, which drastically simplifies them. We show that they are products of several simply organized matrices and obtain for them explicit formulae.
Key words and phrases: Yang–Baxter equation, $\mathrm R$-matrix, quantum integrable systems, Sklyanin algebra.
Received: 02.03.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 213, Issue 5, Pages 723–742
DOI: https://doi.org/10.1007/s10958-016-2734-0
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: S. E. Derkachov, D. I. Chicherin, “Matrix factorization for solutions of the Yang–Baxter equation”, Questions of quantum field theory and statistical physics. Part 23, Zap. Nauchn. Sem. POMI, 433, POMI, St. Petersburg, 2015, 156–185; J. Math. Sci. (N. Y.), 213:5 (2016), 723–742
Citation in format AMSBIB
\Bibitem{DerChi15}
\by S.~E.~Derkachov, D.~I.~Chicherin
\paper Matrix factorization for solutions of the Yang--Baxter equation
\inbook Questions of quantum field theory and statistical physics. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 433
\pages 156--185
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6131}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3493684}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 213
\issue 5
\pages 723--742
\crossref{https://doi.org/10.1007/s10958-016-2734-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957541743}
Linking options:
  • https://www.mathnet.ru/eng/znsl6131
  • https://www.mathnet.ru/eng/znsl/v433/p156
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:251
    Full-text PDF :69
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024