Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 433, Pages 111–130 (Mi znsl6129)  

The discrete spectrum of Jacobi matrix related to recurrence relations with periodic coefficients

V. V. Borzova, E. V. Damaskinskyb

a St. Petersburg State University of Telecommunications, St. Petersburg, Russia
b Military Technical Institute, St. Petersburg, Russia
References:
Abstract: In this note we investigate the discrete spectrum of Jacobi matrix corresponding to polynomials defined by recurrence relations with periodic coefficients. As examples we consider
a) the case when period $N$ of coefficients of recurrence relations equals three (as a particular case we consider “parametric” Chebyshev polynomials introduced by authors early);
b) the elementary $N$-symmetrical Chebyshev polynomials ($N=3,4,5$), that was introduced by authors in the study of the “composite model of generalized oscillator”.
Received: 11.03.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 213, Issue 5, Pages 694–705
DOI: https://doi.org/10.1007/s10958-016-2732-2
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. V. Borzov, E. V. Damaskinsky, “The discrete spectrum of Jacobi matrix related to recurrence relations with periodic coefficients”, Questions of quantum field theory and statistical physics. Part 23, Zap. Nauchn. Sem. POMI, 433, POMI, St. Petersburg, 2015, 111–130; J. Math. Sci. (N. Y.), 213:5 (2016), 694–705
Citation in format AMSBIB
\Bibitem{BorDam15}
\by V.~V.~Borzov, E.~V.~Damaskinsky
\paper The discrete spectrum of Jacobi matrix related to recurrence relations with periodic coefficients
\inbook Questions of quantum field theory and statistical physics. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 433
\pages 111--130
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6129}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3493682}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 213
\issue 5
\pages 694--705
\crossref{https://doi.org/10.1007/s10958-016-2732-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957707945}
Linking options:
  • https://www.mathnet.ru/eng/znsl6129
  • https://www.mathnet.ru/eng/znsl/v433/p111
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :38
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024