Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 433, Pages 20–40 (Mi znsl6125)  

This article is cited in 4 scientific papers (total in 4 papers)

Representations of quantum conjugacy classes of orthosymplectic groups

Th. Ashton, A. Mudrov

Department of Mathematics, University of Leicester, University Road, LE1 7RH Leicester, UK
Full-text PDF (296 kB) Citations (4)
References:
Abstract: Let $G$ be the complex symplectic or special orthogonal group and $\mathfrak g$ its Lie algebra. With every point $x$ of the maximal torus $T\subset G$ we associate a highest weight module $M_x$ over the Drinfeld–Jimbo quantum group $U_q(\mathfrak g)$ and a quantization of the conjugacy class of $x$ by operators in $\mathrm{End}(M_x)$. These quantizations are isomorphic for $x$ lying on the same orbit of the Weyl group, and $M_x$ support different representations of the same quantum conjugacy class.
Key words and phrases: quantum groups, deformation quantization, conjugacy classes.
Received: 02.03.2015
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 213, Issue 5, Pages 637–650
DOI: https://doi.org/10.1007/s10958-016-2728-y
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: Th. Ashton, A. Mudrov, “Representations of quantum conjugacy classes of orthosymplectic groups”, Questions of quantum field theory and statistical physics. Part 23, Zap. Nauchn. Sem. POMI, 433, POMI, St. Petersburg, 2015, 20–40; J. Math. Sci. (N. Y.), 213:5 (2016), 637–650
Citation in format AMSBIB
\Bibitem{AshMud15}
\by Th.~Ashton, A.~Mudrov
\paper Representations of quantum conjugacy classes of orthosymplectic groups
\inbook Questions of quantum field theory and statistical physics. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 433
\pages 20--40
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6125}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3493678}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 213
\issue 5
\pages 637--650
\crossref{https://doi.org/10.1007/s10958-016-2728-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957550063}
Linking options:
  • https://www.mathnet.ru/eng/znsl6125
  • https://www.mathnet.ru/eng/znsl/v433/p20
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :31
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024