Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 432, Pages 274–296 (Mi znsl6121)  

This article is cited in 6 scientific papers (total in 6 papers)

On the geometric probability of entangled mixed states

A. Khvedelidzeabc, I. Rogojinc

a A. Razmadze Mathematical Institute, Tbilisi, Georgia
b University of Georgia, Tbilisi, Georgia
c Joint Institute for Nuclear Research, Dubna, Russia
Full-text PDF (417 kB) Citations (6)
References:
Abstract: The state space of a composite quantum system, the set of density matrices $\mathfrak P_+$, is decomposable into the space of separable states $\mathfrak S_+$ and its complement, the space of entangled states. An explicit construction of such a decomposition constitutes the so-called separability problem. If the space $\mathfrak P_+$ is endowed with a certain Riemannian metric, then the separability problem admits a measurement-theoretical formulation. In particular, one can define the “geometric probability of separability” as the relative volume of the space of separable states $\mathfrak S_+$ with respect to the volume of all states. In the present note, based on the Peres–Horodecki positive partial transposition criterion, the measurement theoretical aspects of the separability problem are discussed for bipartite systems composed either of two qubits or of qubit-qutrit pairs. The necessary and sufficient conditions for the $2$-qubit state separability are formulated in terms of local $\mathrm{SU(2)\otimes SU(2)}$ invariant polynomials, the determinant of the correlation matrix, and the determinant of the Schlienz–Mahler matrix. Using the projective method of generation of random density matrices distributed according to the Hilbert–Schmidt or Bures measure, the separability (including the absolute separability) probabilities of $2$-qubit and qubit-qutrit pairs have been calculated.
Key words and phrases: geometric probability, qubit, entanglement space.
Received: 29.07.2014
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 209, Issue 6, Pages 988–1004
DOI: https://doi.org/10.1007/s10958-015-2542-y
Bibliographic databases:
Document Type: Article
UDC: 512.816+530.145
Language: English
Citation: A. Khvedelidze, I. Rogojin, “On the geometric probability of entangled mixed states”, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Zap. Nauchn. Sem. POMI, 432, POMI, St. Petersburg, 2015, 274–296; J. Math. Sci. (N. Y.), 209:6 (2015), 988–1004
Citation in format AMSBIB
\Bibitem{KhvRog15}
\by A.~Khvedelidze, I.~Rogojin
\paper On the geometric probability of entangled mixed states
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXIV
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 432
\pages 274--296
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6121}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 209
\issue 6
\pages 988--1004
\crossref{https://doi.org/10.1007/s10958-015-2542-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940879281}
Linking options:
  • https://www.mathnet.ru/eng/znsl6121
  • https://www.mathnet.ru/eng/znsl/v432/p274
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:283
    Full-text PDF :109
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024