|
Zapiski Nauchnykh Seminarov POMI, 2015, Volume 432, Pages 111–127
(Mi znsl6114)
|
|
|
|
Constructing $\mathrm{SU(2)\times U(1)}$ orbit space for qutrit mixed states
V. Gerdta, A. Khvedelidzeab, Y. Paliica a Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Russia
b Ivane Javakhishvili Tbilisi State University, A. Razmadze Mathematical Institute, Tbilisi, Georgia
c Institute of Applied Physics, Moldova Academy of Sciences, Chisinau, Republic of Moldova
Abstract:
The orbit space $\mathfrak P(\mathbb R^8)/\mathrm G$ of the group $$ \mathrm{G:=SU(2)\times U(1)\subset U(3)} $$ acting adjointly on the state space $\mathfrak P(\mathbb R^8)$ of a $3$-level quantum system is discussed. The semi-algebraic structure of $\mathfrak P(\mathbb R^8)/\mathrm G$ is determined within the Procesi–Schwarz method. Using the integrity basis for the ring of $\mathrm G$-invariant polynomials $\mathbb R[\mathfrak P(\mathbb R^8)]^\mathrm G$, the set of constraints on the Casimir invariants of the group $\mathrm U(3)$ coming from the positivity requirement for Procesi–Schwarz gradient matrix, $\mathrm{Grad}(z)\geqslant0$, is analyzed in detail.
Key words and phrases:
theory of invariants, orbit space, semi-algebraic sets, qutrit, entanglement space.
Received: 29.07.2014
Citation:
V. Gerdt, A. Khvedelidze, Y. Palii, “Constructing $\mathrm{SU(2)\times U(1)}$ orbit space for qutrit mixed states”, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Zap. Nauchn. Sem. POMI, 432, POMI, St. Petersburg, 2015, 111–127; J. Math. Sci. (N. Y.), 209:6 (2015), 878–889
Linking options:
https://www.mathnet.ru/eng/znsl6114 https://www.mathnet.ru/eng/znsl/v432/p111
|
Statistics & downloads: |
Abstract page: | 175 | Full-text PDF : | 67 | References: | 28 |
|