Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 432, Pages 111–127 (Mi znsl6114)  

Constructing $\mathrm{SU(2)\times U(1)}$ orbit space for qutrit mixed states

V. Gerdta, A. Khvedelidzeab, Y. Paliica

a Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Russia
b Ivane Javakhishvili Tbilisi State University, A. Razmadze Mathematical Institute, Tbilisi, Georgia
c Institute of Applied Physics, Moldova Academy of Sciences, Chisinau, Republic of Moldova
References:
Abstract: The orbit space $\mathfrak P(\mathbb R^8)/\mathrm G$ of the group
$$ \mathrm{G:=SU(2)\times U(1)\subset U(3)} $$
acting adjointly on the state space $\mathfrak P(\mathbb R^8)$ of a $3$-level quantum system is discussed. The semi-algebraic structure of $\mathfrak P(\mathbb R^8)/\mathrm G$ is determined within the Procesi–Schwarz method. Using the integrity basis for the ring of $\mathrm G$-invariant polynomials $\mathbb R[\mathfrak P(\mathbb R^8)]^\mathrm G$, the set of constraints on the Casimir invariants of the group $\mathrm U(3)$ coming from the positivity requirement for Procesi–Schwarz gradient matrix, $\mathrm{Grad}(z)\geqslant0$, is analyzed in detail.
Key words and phrases: theory of invariants, orbit space, semi-algebraic sets, qutrit, entanglement space.
Received: 29.07.2014
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 209, Issue 6, Pages 878–889
DOI: https://doi.org/10.1007/s10958-015-2535-x
Bibliographic databases:
Document Type: Article
UDC: 512.81+530.145
Language: English
Citation: V. Gerdt, A. Khvedelidze, Y. Palii, “Constructing $\mathrm{SU(2)\times U(1)}$ orbit space for qutrit mixed states”, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Zap. Nauchn. Sem. POMI, 432, POMI, St. Petersburg, 2015, 111–127; J. Math. Sci. (N. Y.), 209:6 (2015), 878–889
Citation in format AMSBIB
\Bibitem{GerKhvPal15}
\by V.~Gerdt, A.~Khvedelidze, Y.~Palii
\paper Constructing $\mathrm{SU(2)\times U(1)}$ orbit space for qutrit mixed states
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXIV
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 432
\pages 111--127
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6114}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 209
\issue 6
\pages 878--889
\crossref{https://doi.org/10.1007/s10958-015-2535-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939430869}
Linking options:
  • https://www.mathnet.ru/eng/znsl6114
  • https://www.mathnet.ru/eng/znsl/v432/p111
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :67
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024