Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 432, Pages 58–67 (Mi znsl6110)  

This article is cited in 3 scientific papers (total in 3 papers)

Polynomial interpolation over the residue rings $Z_n$

N. N. Vasilieva, O. Kanzhelevabc

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State Polytechnical University, St. Petersburg, Russia
c Google Corporation, Irvine, USA
Full-text PDF (169 kB) Citations (3)
References:
Abstract: We consider the problem of polynomial interpolation over the residue rings $Z_n$. The general case can be easily reduced to the case of $n=p^k$ due to the Chinese reminder theorem. In contrast to the interpolation problem over fields, the case of rings is much more complicated due to the existence of nonzero polynomials representing the zero function. Also, the result of interpolation is not unique in the general case. We compute, in the frame of the CAS system Singular, the Gröbner bases of ideals of null-polynomials over residue rings. This allows us to obtain a canonical form for the results of interpolation. We also describe a connection between estimates of the cardinality of interpolating sets and of the total number of permutation polynomials over the ring. As a consequence, we give a recurrence formula for the number of permutation polynomials over $Z_p^k$.
Key words and phrases: residue ring, null polynomials, Frobenius polynomial, permutational polynomial over residue ring.
Received: 04.11.2014
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 209, Issue 6, Pages 845–850
DOI: https://doi.org/10.1007/s10958-015-2531-1
Bibliographic databases:
Document Type: Article
UDC: 512.71
Language: Russian
Citation: N. N. Vasiliev, O. Kanzheleva, “Polynomial interpolation over the residue rings $Z_n$”, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Zap. Nauchn. Sem. POMI, 432, POMI, St. Petersburg, 2015, 58–67; J. Math. Sci. (N. Y.), 209:6 (2015), 845–850
Citation in format AMSBIB
\Bibitem{VasKan15}
\by N.~N.~Vasiliev, O.~Kanzheleva
\paper Polynomial interpolation over the residue rings~$Z_n$
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXIV
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 432
\pages 58--67
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6110}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 209
\issue 6
\pages 845--850
\crossref{https://doi.org/10.1007/s10958-015-2531-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939419756}
Linking options:
  • https://www.mathnet.ru/eng/znsl6110
  • https://www.mathnet.ru/eng/znsl/v432/p58
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :116
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024