Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2015, Volume 432, Pages 36–57 (Mi znsl6109)  

This article is cited in 5 scientific papers (total in 5 papers)

On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups

M. V. Babichab

a St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (284 kB) Citations (5)
References:
Abstract: Any coadjoint orbit of the general linear group can be canonically parameterized using an iteration method, where at each step we turn from the matrix of a transformation $A$ to the matrix of the transformation that is the projection of $A$ parallel to an eigenspace of this transformation to a coordinate subspace.
We present a modification of the method applicable to the groups $\mathrm{SO}(N,\mathbb C)$ and $\mathrm{Sp}(N,\mathbb C)$. One step of the iteration consists of two actions, namely, the projection parallel to a subspace of an eigenspace and the simultaneous restriction to a subspace containing a co-eigenspace.
The iteration gives a set of couples of functions $p_k,q_k$ on the orbit such that the symplectic form of the orbit is equal to $\sum_kdp_k\wedge dq_k$. No restrictions on the Jordan form of the matrices forming the orbit are imposed.
A coordinate set of functions is selected in the important case of the absence of nontrivial Jordan blocks corresponding to the zero eigenvalue, which is the case $\dim\ker A=\dim\ker A^2$. This case contains the case of general position, the general diagonalizable case, and many others.
Key words and phrases: coadjoint orbit, classical Lie groups, Lie algebra, Lie–Poisson–Kirillov–Kostant form, symplectic fibration, rational Darboux coordinates.
Received: 22.12.2014
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 209, Issue 6, Pages 830–844
DOI: https://doi.org/10.1007/s10958-015-2530-2
Bibliographic databases:
Document Type: Article
UDC: 512.643.8+514.164.1+517.912
Language: English
Citation: M. V. Babich, “On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups”, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Zap. Nauchn. Sem. POMI, 432, POMI, St. Petersburg, 2015, 36–57; J. Math. Sci. (N. Y.), 209:6 (2015), 830–844
Citation in format AMSBIB
\Bibitem{Bab15}
\by M.~V.~Babich
\paper On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXIV
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 432
\pages 36--57
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6109}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 209
\issue 6
\pages 830--844
\crossref{https://doi.org/10.1007/s10958-015-2530-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939435620}
Linking options:
  • https://www.mathnet.ru/eng/znsl6109
  • https://www.mathnet.ru/eng/znsl/v432/p36
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :86
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024