Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2007, Volume 348, Pages 19–39 (Mi znsl61)  

This article is cited in 16 scientific papers (total in 16 papers)

Global solvability of a problem on two fluid motion without surface tension

I. V. Denisova

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
References:
Abstract: Unsteady motion of viscous incompressible fluids is considered in a bounded domain. The liquids are separated by an unknown interface on which the surface tension is neglected. This motion is governed by an interface problem for the Navier–Stokes system. First, a local existence theorem is established for the problem in Hölder classes of functions. The proof is based on the solvability of a model problem for the Stokes system with a plane interface which was obtained earlier. Next, for a small initial velocity vector field and small mass forces, we prove the existence of a unique smooth solution to the problem on the infinite time interval.
Received: 30.11.2007
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 152, Issue 5, Pages 625–637
DOI: https://doi.org/10.1007/s10958-008-9096-1
Bibliographic databases:
UDC: 517
Language: English
Citation: I. V. Denisova, “Global solvability of a problem on two fluid motion without surface tension”, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Zap. Nauchn. Sem. POMI, 348, POMI, St. Petersburg, 2007, 19–39; J. Math. Sci. (N. Y.), 152:5 (2008), 625–637
Citation in format AMSBIB
\Bibitem{Den07}
\by I.~V.~Denisova
\paper Global solvability of a problem on two fluid motion
without surface tension
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~38
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 348
\pages 19--39
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl61}
\elib{https://elibrary.ru/item.asp?id=13077192}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2008
\vol 152
\issue 5
\pages 625--637
\crossref{https://doi.org/10.1007/s10958-008-9096-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51749089749}
Linking options:
  • https://www.mathnet.ru/eng/znsl61
  • https://www.mathnet.ru/eng/znsl/v348/p19
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:188
    Full-text PDF :70
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024