Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 431, Pages 72–81 (Mi znsl6095)  

This article is cited in 5 scientific papers (total in 5 papers)

On the Littlewood–Offord problem

Yu. S. Eliseevaab, A. Yu. Zaitsevac

a St. Petersburg State University, St. Petersburg, Russia
b Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia
c St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (188 kB) Citations (5)
References:
Abstract: The paper deals with studying a connection of the Littlewood–Offord problem with estimating the concentration functions of some symmetric infinitely divisible distributions. Some multivariate generalizations of results of Arak (1980) are given. They show a connection of the concentration function of the sum with the arithmetic structure of supports of distributions of independent random vectors for arbitrary distributions of summands.
Key words and phrases: concentration functions, inequalities, the Littlewood–Offord problem, sums of independent random variables.
Received: 18.11.2014
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 214, Issue 4, Pages 467–473
DOI: https://doi.org/10.1007/s10958-016-2790-5
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: Yu. S. Eliseeva, A. Yu. Zaitsev, “On the Littlewood–Offord problem”, Probability and statistics. Part 21, Zap. Nauchn. Sem. POMI, 431, POMI, St. Petersburg, 2014, 72–81; J. Math. Sci. (N. Y.), 214:4 (2016), 467–473
Citation in format AMSBIB
\Bibitem{EliZai14}
\by Yu.~S.~Eliseeva, A.~Yu.~Zaitsev
\paper On the Littlewood--Offord problem
\inbook Probability and statistics. Part~21
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 431
\pages 72--81
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6095}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3488637}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 214
\issue 4
\pages 467--473
\crossref{https://doi.org/10.1007/s10958-016-2790-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961120249}
Linking options:
  • https://www.mathnet.ru/eng/znsl6095
  • https://www.mathnet.ru/eng/znsl/v431/p72
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :69
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024