Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 430, Pages 103–113 (Mi znsl6086)  

Intersection and incidence distances between parabolic subgroups of a reductive group

N. Gordeeva, U. Rehmannb

a Department of Mathematics, Russian State Pedagogical University, Moijka 48, St. Petersburg 191186, Russia
b Department of Mathematics, Bielefeled University, Universitätsstrasse 25, D-33615 Bielefeld, Germany
References:
Abstract: Let $\Gamma$ be a reductive algebraic group and let $P,Q\subset\Gamma$ be a pair of parabolic subgroups. We consider here some properties of intersection and incident distances
\begin{gather*} d_\mathrm{in}(P,Q)=\max\{\dim P,\dim Q\}-\dim (P\cap Q),\\ d_\mathrm{inc}(P,Q)=\min\{\dim P,\dim Q\}-\dim (P\cap Q) \end{gather*}
(if $P,Q$ are Borel subgroups, both numbers coincide with the Tits distance $\operatorname{dist}(P,Q)$ in the building $\Delta(\Gamma)$ of all parabolic subgroups of $\Gamma$). In particular, if $\Gamma=\mathrm{GL}(V)$ and $P=P_v$, $Q=P_u$ are stabilizers in $\mathrm{GL}(V)$ of linear subspaces $v,u\subset V$ we obtain the formula
$$ d_\mathrm{in}(P,Q)=-d^{\,2}+a_1d+a_2 $$
where $d=d_\mathrm{in}(v,u)=\max\{\dim v,\dim u\}-\dim(v\cap u)$ is the intersection distance between the subspaces $v,u$, and where $a_1, a_2$ are integers expressed in terms of $\dim V,\dim v,\dim u$.
Key words and phrases: parabolic subgroups, Tits distance, Schubert cells.
Received: 23.09.2014
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 219, Issue 3, Pages 405–412
DOI: https://doi.org/10.1007/s10958-016-3116-3
Bibliographic databases:
Document Type: Article
UDC: 512.743
Language: English
Citation: N. Gordeev, U. Rehmann, “Intersection and incidence distances between parabolic subgroups of a reductive group”, Problems in the theory of representations of algebras and groups. Part 27, Zap. Nauchn. Sem. POMI, 430, POMI, St. Petersburg, 2014, 103–113; J. Math. Sci. (N. Y.), 219:3 (2016), 405–412
Citation in format AMSBIB
\Bibitem{GorReh14}
\by N.~Gordeev, U.~Rehmann
\paper Intersection and incidence distances between parabolic subgroups of a reductive group
\inbook Problems in the theory of representations of algebras and groups. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 430
\pages 103--113
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6086}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3486765}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 219
\issue 3
\pages 405--412
\crossref{https://doi.org/10.1007/s10958-016-3116-3}
Linking options:
  • https://www.mathnet.ru/eng/znsl6086
  • https://www.mathnet.ru/eng/znsl/v430/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :47
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024