|
Zapiski Nauchnykh Seminarov POMI, 2014, Volume 430, Pages 61–66
(Mi znsl6083)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Lubin–Tate formal module in a cyclic unramified $p$-extension as Galois module
S. V. Vostokova, I. I. Nekrasov a St. Petersburg State University, St. Petersburg, Russia
Abstract:
In this paper we describe the structure of the $\mathcal O_K[G]$-module $F(\mathfrak m_M)$, where $M/L$, $L/K$, $K/\mathbb Q_p$ are finite Galois extensions ($p$ is fixed prime number), $G=\mathrm{Gal}(M/L)$, $\mathfrak m_M$ is a maximal ideal of $M$ and $F$ is a formal Lubin–Tate group law over $\mathcal O_K$ for a prime element $\pi$.
Key words and phrases:
Lubin–Tate formal module, Galoise module, local field.
Received: 23.09.2014
Citation:
S. V. Vostokov, I. I. Nekrasov, “Lubin–Tate formal module in a cyclic unramified $p$-extension as Galois module”, Problems in the theory of representations of algebras and groups. Part 27, Zap. Nauchn. Sem. POMI, 430, POMI, St. Petersburg, 2014, 61–66; J. Math. Sci. (N. Y.), 219:3 (2016), 375–379
Linking options:
https://www.mathnet.ru/eng/znsl6083 https://www.mathnet.ru/eng/znsl/v430/p61
|
Statistics & downloads: |
Abstract page: | 360 | Full-text PDF : | 126 | References: | 50 |
|