|
Zapiski Nauchnykh Seminarov POMI, 2014, Volume 429, Pages 178–192
(Mi znsl6074)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On the Dedekind zeta function. II
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Let $K_n$ be a number field of degree $n$ over $\mathbb Q$. Denote by $A(x,K_n)$ the number of integer ideals of $K_n$ with norm $\leq x$. For $K_8=\mathbb Q(\sqrt{-1},\root4\of m)$, $K_8=\mathbb Q(\root4\of{\varepsilon_m})$ and $K_{16}=\mathbb Q(\sqrt{-1},\root4\of{\varepsilon_m})$, where $m$ is a positive square free integer and $\varepsilon_m$ denotes the fundamental unit of $\mathbb Q(\sqrt m)$, the author proves that
$$
A(x,K_n)=\Lambda_nx+\Delta(x,K_n)(x,K_n),\quad\Delta(x,K_n)\ll x^{1-\frac3{n+2}+\varepsilon}.
$$
This improves earlier results of E. Landau (1917) and W. G. Nowak (Math. Nachr. 161 (1993), 59–74) for the indicated special cases.
The author also treats Titchmarch's phenomenon for $\zeta_{K_n}(s)$ and large values of $\Delta(x,K_n)$.
Key words and phrases:
Dedekind $\zeta$-function, extremal values.
Received: 20.10.2014
Citation:
O. M. Fomenko, “On the Dedekind zeta function. II”, Analytical theory of numbers and theory of functions. Part 29, Zap. Nauchn. Sem. POMI, 429, POMI, St. Petersburg, 2014, 178–192; J. Math. Sci. (N. Y.), 207:6 (2015), 923–933
Linking options:
https://www.mathnet.ru/eng/znsl6074 https://www.mathnet.ru/eng/znsl/v429/p178
|
Statistics & downloads: |
Abstract page: | 236 | Full-text PDF : | 51 | References: | 54 |
|