Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 429, Pages 178–192 (Mi znsl6074)  

This article is cited in 2 scientific papers (total in 2 papers)

On the Dedekind zeta function. II

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (224 kB) Citations (2)
References:
Abstract: Let $K_n$ be a number field of degree $n$ over $\mathbb Q$. Denote by $A(x,K_n)$ the number of integer ideals of $K_n$ with norm $\leq x$. For $K_8=\mathbb Q(\sqrt{-1},\root4\of m)$, $K_8=\mathbb Q(\root4\of{\varepsilon_m})$ and $K_{16}=\mathbb Q(\sqrt{-1},\root4\of{\varepsilon_m})$, where $m$ is a positive square free integer and $\varepsilon_m$ denotes the fundamental unit of $\mathbb Q(\sqrt m)$, the author proves that
$$ A(x,K_n)=\Lambda_nx+\Delta(x,K_n)(x,K_n),\quad\Delta(x,K_n)\ll x^{1-\frac3{n+2}+\varepsilon}. $$
This improves earlier results of E. Landau (1917) and W. G. Nowak (Math. Nachr. 161 (1993), 59–74) for the indicated special cases.
The author also treats Titchmarch's phenomenon for $\zeta_{K_n}(s)$ and large values of $\Delta(x,K_n)$.
Key words and phrases: Dedekind $\zeta$-function, extremal values.
Received: 20.10.2014
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 207, Issue 6, Pages 923–933
DOI: https://doi.org/10.1007/s10958-015-2415-4
Bibliographic databases:
Document Type: Article
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “On the Dedekind zeta function. II”, Analytical theory of numbers and theory of functions. Part 29, Zap. Nauchn. Sem. POMI, 429, POMI, St. Petersburg, 2014, 178–192; J. Math. Sci. (N. Y.), 207:6 (2015), 923–933
Citation in format AMSBIB
\Bibitem{Fom14}
\by O.~M.~Fomenko
\paper On the Dedekind zeta function.~II
\inbook Analytical theory of numbers and theory of functions. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 429
\pages 178--192
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6074}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 207
\issue 6
\pages 923--933
\crossref{https://doi.org/10.1007/s10958-015-2415-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949626578}
Linking options:
  • https://www.mathnet.ru/eng/znsl6074
  • https://www.mathnet.ru/eng/znsl/v429/p178
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:235
    Full-text PDF :46
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024