|
Zapiski Nauchnykh Seminarov POMI, 2004, Volume 320, Pages 187–225
(Mi znsl607)
|
|
|
|
Exact rate of convergence for increments of random fields
O. E. Shcherbakova Saint-Petersburg State Polytechnical University
Abstract:
The rate of convergence in strong limit theorems for maximal increments of random fields on parallelepipeds of big volume $a_{N}$ ($\lim\frac{a_{N}}{\log{N}}=\infty$, $\lim\frac{\log\frac{N}{a_{N}}}{\log_{2}N}=\infty$) is investigated. We consider random fields with finite moment generating function in right neighborhood of zero.
Received: 15.06.2004
Citation:
O. E. Shcherbakova, “Exact rate of convergence for increments of random fields”, Probability and statistics. Part 8, Zap. Nauchn. Sem. POMI, 320, POMI, St. Petersburg, 2004, 187–225; J. Math. Sci. (N. Y.), 137:1 (2006), 4583–4608
Linking options:
https://www.mathnet.ru/eng/znsl607 https://www.mathnet.ru/eng/znsl/v320/p187
|
Statistics & downloads: |
Abstract page: | 177 | Full-text PDF : | 50 | References: | 34 |
|