Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 429, Pages 44–54 (Mi znsl6066)  

This article is cited in 3 scientific papers (total in 3 papers)

Inequalities for moduli of the circumferentially mean $p$-valent functions

V. N. Dubininab

a Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
b Far Eastern Federal University, Vladivostok, Russia
Full-text PDF (204 kB) Citations (3)
References:
Abstract: Let $f$ be a circumferentially mean $p$-valent function in the disk $|z|<1$ with Montel's normalization: $f(0)=0$, $f(\omega)=\omega$ $(0<\omega<1)$. Under an additional constraint on the covering of the concentric circles by $f$, precise lower and upper bounds of modulus $|f(z)|$ for some $z\in(-1,0)$ are established. The necessity of such constraint for the non-trivial estimates to be true is shown.
Key words and phrases: holomorphic function, $p$-valent function, Chebyshev polynomial, symmetrization, circumferentially mean $p$-valent function.
Received: 01.08.2014
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 207, Issue 6, Pages 832–838
DOI: https://doi.org/10.1007/s10958-015-2407-4
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. N. Dubinin, “Inequalities for moduli of the circumferentially mean $p$-valent functions”, Analytical theory of numbers and theory of functions. Part 29, Zap. Nauchn. Sem. POMI, 429, POMI, St. Petersburg, 2014, 44–54; J. Math. Sci. (N. Y.), 207:6 (2015), 832–838
Citation in format AMSBIB
\Bibitem{Dub14}
\by V.~N.~Dubinin
\paper Inequalities for moduli of the circumferentially mean $p$-valent functions
\inbook Analytical theory of numbers and theory of functions. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 429
\pages 44--54
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6066}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 207
\issue 6
\pages 832--838
\crossref{https://doi.org/10.1007/s10958-015-2407-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949624170}
Linking options:
  • https://www.mathnet.ru/eng/znsl6066
  • https://www.mathnet.ru/eng/znsl/v429/p44
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :60
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024