|
Zapiski Nauchnykh Seminarov POMI, 2014, Volume 429, Pages 11–19
(Mi znsl6063)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Salem's problem for the inverse Minkowski $?(t)$ function
E. P. Golubeva St. Petersburg State University of Telecommunications, St. Petersburg, Russia
Abstract:
Let $d_n$ be the coefficient Fourier–Stieltjes of the Minkowski $?(t)$ function –
$$
d_n=\int^1_0\cos2\pi nt\,d?(t).
$$
Salem's problem is as to whether $d_n$ tends to zero as $n\to\infty$.
In the paper the coefficient Fourier
$$
\alpha_n=\int^1_0\cos(2\pi n?(t))\,dt
$$
is considered. It is proved that $\alpha_n$ does not tend to zero as $n\to\infty$.
Key words and phrases:
Minkowski function, Farey tree, Salem's problem.
Received: 18.09.2014
Citation:
E. P. Golubeva, “Salem's problem for the inverse Minkowski $?(t)$ function”, Analytical theory of numbers and theory of functions. Part 29, Zap. Nauchn. Sem. POMI, 429, POMI, St. Petersburg, 2014, 11–19; J. Math. Sci. (N. Y.), 207:6 (2015), 808–814
Linking options:
https://www.mathnet.ru/eng/znsl6063 https://www.mathnet.ru/eng/znsl/v429/p11
|
Statistics & downloads: |
Abstract page: | 274 | Full-text PDF : | 100 | References: | 44 |
|