Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 429, Pages 11–19 (Mi znsl6063)  

This article is cited in 1 scientific paper (total in 1 paper)

Salem's problem for the inverse Minkowski $?(t)$ function

E. P. Golubeva

St. Petersburg State University of Telecommunications, St. Petersburg, Russia
Full-text PDF (161 kB) Citations (1)
References:
Abstract: Let $d_n$ be the coefficient Fourier–Stieltjes of the Minkowski $?(t)$ function –
$$ d_n=\int^1_0\cos2\pi nt\,d?(t). $$
Salem's problem is as to whether $d_n$ tends to zero as $n\to\infty$.
In the paper the coefficient Fourier
$$ \alpha_n=\int^1_0\cos(2\pi n?(t))\,dt $$
is considered. It is proved that $\alpha_n$ does not tend to zero as $n\to\infty$.
Key words and phrases: Minkowski function, Farey tree, Salem's problem.
Received: 18.09.2014
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 207, Issue 6, Pages 808–814
DOI: https://doi.org/10.1007/s10958-015-2404-7
Bibliographic databases:
Document Type: Article
UDC: 519
Language: Russian
Citation: E. P. Golubeva, “Salem's problem for the inverse Minkowski $?(t)$ function”, Analytical theory of numbers and theory of functions. Part 29, Zap. Nauchn. Sem. POMI, 429, POMI, St. Petersburg, 2014, 11–19; J. Math. Sci. (N. Y.), 207:6 (2015), 808–814
Citation in format AMSBIB
\Bibitem{Gol14}
\by E.~P.~Golubeva
\paper Salem's problem for the inverse Minkowski $?(t)$ function
\inbook Analytical theory of numbers and theory of functions. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 429
\pages 11--19
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6063}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 207
\issue 6
\pages 808--814
\crossref{https://doi.org/10.1007/s10958-015-2404-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949627792}
Linking options:
  • https://www.mathnet.ru/eng/znsl6063
  • https://www.mathnet.ru/eng/znsl/v429/p11
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:274
    Full-text PDF :100
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024