Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 428, Pages 89–106 (Mi znsl6054)  

This article is cited in 6 scientific papers (total in 6 papers)

Some parallel methods and technologies of domain decomposition

Y. L. Gurievaab, V. P. Il'inab

a Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (555 kB) Citations (6)
References:
Abstract: The efficiency of two-level iterative processes in Krylov subspaces is investigated, as well as their parallelization in solving large sparse non-symmetric systems of linear algebraic equations arising from grid approximations of two-dimensional boundary value problems for diffusion-convection equations with different coefficient values. Special attention is paid to optimization of the subdomain intersection size, to the types of boundary conditions on adjacent boundaries in the domain decomposition method, and to the aggregation (or coarse grid correction) algorithms. Outer iterative process is based on the additive Schwarz algorithm, while parallel solution of the subdomain algebraic systems is effected by a direct or a preconditioned Krylov method. A crucial point in programming realization of these approaches is a technology of forming the so-called extended algebraic subsystems in the compressed sparse row format. A comparative analysis of the influence of various parameters is carried out basing on numerical experiments data. Some issues related to the scalability of parallelization are discussed.
Key words and phrases: domain decomposition, parallel two-level methods, Krylov subspaces, preconditioning matrices, aggregation algorithms, subdomain intersections, interface conditions.
Received: 10.11.2014
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 207, Issue 5, Pages 724–735
DOI: https://doi.org/10.1007/s10958-015-2395-4
Bibliographic databases:
Document Type: Article
UDC: 519.612
Language: Russian
Citation: Y. L. Gurieva, V. P. Il'in, “Some parallel methods and technologies of domain decomposition”, Computational methods and algorithms. Part XXVII, Zap. Nauchn. Sem. POMI, 428, POMI, St. Petersburg, 2014, 89–106; J. Math. Sci. (N. Y.), 207:5 (2015), 724–735
Citation in format AMSBIB
\Bibitem{GurIli14}
\by Y.~L.~Gurieva, V.~P.~Il'in
\paper Some parallel methods and technologies of domain decomposition
\inbook Computational methods and algorithms. Part~XXVII
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 428
\pages 89--106
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6054}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 207
\issue 5
\pages 724--735
\crossref{https://doi.org/10.1007/s10958-015-2395-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949625188}
Linking options:
  • https://www.mathnet.ru/eng/znsl6054
  • https://www.mathnet.ru/eng/znsl/v428/p89
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:243
    Full-text PDF :77
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024