Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 427, Pages 105–113 (Mi znsl6046)  

Almost regular partition of a graph

K. S. Savenkov

St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: Let $k\le8$ be a positive integer and $G$ be a graph on $n$ vertices such that each vertex degree of $G$ is at least $\frac{k-1}kn$. It is proved in the paper that the vertex set of $G$ can be partitioned into several cliques of size at most $k$, such that for each positive integer $k_0<k$ there is at most one clique of size $k_0$ in this partition.
Key words and phrases: clique, partition.
Received: 07.11.2014
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 212, Issue 6, Pages 708–713
DOI: https://doi.org/10.1007/s10958-016-2701-9
Bibliographic databases:
Document Type: Article
UDC: 519.174.1
Language: Russian
Citation: K. S. Savenkov, “Almost regular partition of a graph”, Combinatorics and graph theory. Part VII, Zap. Nauchn. Sem. POMI, 427, POMI, St. Petersburg, 2014, 105–113; J. Math. Sci. (N. Y.), 212:6 (2016), 708–713
Citation in format AMSBIB
\Bibitem{Sav14}
\by K.~S.~Savenkov
\paper Almost regular partition of a~graph
\inbook Combinatorics and graph theory. Part~VII
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 427
\pages 105--113
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6046}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3485321}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 212
\issue 6
\pages 708--713
\crossref{https://doi.org/10.1007/s10958-016-2701-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953431736}
Linking options:
  • https://www.mathnet.ru/eng/znsl6046
  • https://www.mathnet.ru/eng/znsl/v427/p105
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:115
    Full-text PDF :41
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024