Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 427, Pages 74–88 (Mi znsl6044)  

On Heawood-type problem for maps with tangencies

G. V. Nenashev

Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
References:
Abstract: The class of maps on a surface of genus $g>0$ such that each point belongs to at most $k\geq3$ regions is studied. We study chromatic numbers of such maps (regions having a common point must have distinct colors) in dependence on $g$ and $k$.
In general case, upper bounds on these chromatic numbers are proved. In case $k=4$, it is proved that the problem described above is equivalent to the problem of finding the maximal chromatic number for analogues of $1$-planar graphs on a surface of genus $g$. In this case a more strong bound than in general case is obtained and a method of constructing examples which confirm accuracy of our bound is presented.
An upper bound on maximal chromatic number for analogues of $2$-planar graphs on a surface of genus $g$ is proved.
Key words and phrases: graph embedding, map, surface, chromatic number, $1$-planar graph, topological graph.
Received: 10.11.2014
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 212, Issue 6, Pages 688–697
DOI: https://doi.org/10.1007/s10958-016-2699-z
Bibliographic databases:
Document Type: Article
UDC: 519.173.2+519.174.7
Language: Russian
Citation: G. V. Nenashev, “On Heawood-type problem for maps with tangencies”, Combinatorics and graph theory. Part VII, Zap. Nauchn. Sem. POMI, 427, POMI, St. Petersburg, 2014, 74–88; J. Math. Sci. (N. Y.), 212:6 (2016), 688–697
Citation in format AMSBIB
\Bibitem{Nen14}
\by G.~V.~Nenashev
\paper On Heawood-type problem for maps with tangencies
\inbook Combinatorics and graph theory. Part~VII
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 427
\pages 74--88
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6044}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3485319}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 212
\issue 6
\pages 688--697
\crossref{https://doi.org/10.1007/s10958-016-2699-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953408111}
Linking options:
  • https://www.mathnet.ru/eng/znsl6044
  • https://www.mathnet.ru/eng/znsl/v427/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:167
    Full-text PDF :35
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024