Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 427, Pages 22–40 (Mi znsl6041)  

This article is cited in 5 scientific papers (total in 5 papers)

The tree of cuts and minimal $k$-connected graphs

D. V. Karpovab

a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
Full-text PDF (254 kB) Citations (5)
References:
Abstract: A cut of a $k$-connected graph $G$ is its $k$-element cutset which contains at least one edge. The tree of cuts of a set $\mathfrak S$, consisting of pairwise independent cuts of a $k$-connected graph is defined as follows. Its vertices are cuts of the set $\mathfrak S$ and parts of the decomposition of $G$ by the cuts of $\mathfrak S$. A part $A$ is adjacent to a cut $S$ if and only if $A$ contains all vertices of $S$ and one end of each edge of $S$. It is proved that the graph described above is a tree and have properties similar to properties of classic tree of blocks and cutpoints.
In the second part of the paper the tree of cuts is applied to study properties of minimal $k$-connected graphs for $k\le5$.
Key words and phrases: connectivity, tree, minimal $k$-connected graph.
Received: 07.11.2014
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 212, Issue 6, Pages 654–665
DOI: https://doi.org/10.1007/s10958-016-2696-2
Bibliographic databases:
Document Type: Article
UDC: 519.173.1
Language: Russian
Citation: D. V. Karpov, “The tree of cuts and minimal $k$-connected graphs”, Combinatorics and graph theory. Part VII, Zap. Nauchn. Sem. POMI, 427, POMI, St. Petersburg, 2014, 22–40; J. Math. Sci. (N. Y.), 212:6 (2016), 654–665
Citation in format AMSBIB
\Bibitem{Kar14}
\by D.~V.~Karpov
\paper The tree of cuts and minimal $k$-connected graphs
\inbook Combinatorics and graph theory. Part~VII
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 427
\pages 22--40
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3485316}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 212
\issue 6
\pages 654--665
\crossref{https://doi.org/10.1007/s10958-016-2696-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953390108}
Linking options:
  • https://www.mathnet.ru/eng/znsl6041
  • https://www.mathnet.ru/eng/znsl/v427/p22
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:174
    Full-text PDF :40
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024