|
Zapiski Nauchnykh Seminarov POMI, 2004, Volume 320, Pages 160–165
(Mi znsl604)
|
|
|
|
Estimation in a model with infinite dimensional nuisance parameter
V. N. Solev, F. Haghighi St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $X_1$ be a random variable with density function $f(t)$, $\Psi(t)$ be an increasing absolutely continuous
function, $\Phi(t)$ be the inverse function, random variable $X_2$ be defined by $X_2=\Phi(X_1)$. We consider the maximum likelihood estimator for density $\psi$ of function $\Psi$ as we observe two independent samples from the distribution of $X_1$ and $X_2$. Under appropriate conditions on the involved distributions, we prove the consistency of maximum likelihood estimator.
Received: 24.12.2004
Citation:
V. N. Solev, F. Haghighi, “Estimation in a model with infinite dimensional nuisance parameter”, Probability and statistics. Part 8, Zap. Nauchn. Sem. POMI, 320, POMI, St. Petersburg, 2004, 160–165; J. Math. Sci. (N. Y.), 137:1 (2006), 4567–4570
Linking options:
https://www.mathnet.ru/eng/znsl604 https://www.mathnet.ru/eng/znsl/v320/p160
|
Statistics & downloads: |
Abstract page: | 216 | Full-text PDF : | 43 | References: | 35 |
|