Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 426, Pages 150–188 (Mi znsl6036)  

On an inverse problem for a one-dimensional two-velocity dynamical system

A. L. Pestov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Evolution of the dynamical system under consideration is governed by the wave equation $\rho u_{tt}-(\gamma u_x)_x+Au_x+Bu=0$, $x>0$, $t>0$ with the zero initial Cauchy data and Dirichlet boundary control at $x=0$. Here, $\rho,\gamma,A,B$ are the smooth $2\times2$-matrix-functions of $x$; $\rho=\mathrm{diag}\{\rho_1,\rho_2\}$ и $\gamma=\mathrm{diag}\{\gamma_1,\gamma_2\}$ – the matrices with positive entries; $u=u(x,t)$ – a solution (an $\mathbb R^2$-valued function). In applications, the system corresponds to one-dimensional models, in which there are two types of the wave modes, which propagate with different velocities and interact to one another.
The `input $\to$ state' correspondence is realized by a response operator $R\colon u(0,t)\mapsto\gamma(0)u_x(0,t)$, $t\geqslant0$, which plays the role of inverse data. The representations for the coefficients $A$ and $B$, which are used for their determination via the response operator, are derived. We provide an example of two systems with the same response operator, such that in the first system the wave modes do not interact, whereas in the second one the interaction does occur.
Key words and phrases: two-velocity dynamical system with boundary control, inverse problem.
Received: 27.10.2014
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 214, Issue 3, Pages 344–371
DOI: https://doi.org/10.1007/s10958-016-2782-5
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. L. Pestov, “On an inverse problem for a one-dimensional two-velocity dynamical system”, Mathematical problems in the theory of wave propagation. Part 44, Zap. Nauchn. Sem. POMI, 426, POMI, St. Petersburg, 2014, 150–188; J. Math. Sci. (N. Y.), 214:3 (2016), 344–371
Citation in format AMSBIB
\Bibitem{Pes14}
\by A.~L.~Pestov
\paper On an inverse problem for a~one-dimensional two-velocity dynamical system
\inbook Mathematical problems in the theory of wave propagation. Part~44
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 426
\pages 150--188
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6036}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3485310}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 214
\issue 3
\pages 344--371
\crossref{https://doi.org/10.1007/s10958-016-2782-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960451226}
Linking options:
  • https://www.mathnet.ru/eng/znsl6036
  • https://www.mathnet.ru/eng/znsl/v426/p150
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:146
    Full-text PDF :37
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024