Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 426, Pages 34–48 (Mi znsl6030)  

This article is cited in 5 scientific papers (total in 5 papers)

Integral symmetry for the confluent Heun equation with added apparent singularity

A. Ya. Kazakovab

a St. Petersburg State University of Technology and Design, St. Petersburg, Russia
b St. Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia
Full-text PDF (191 kB) Citations (5)
References:
Abstract: Confluent Heun equation with added apparent singular point is under consideration. New integral transform connecting solutions of this equation with different parameters is obtained. Kernel of this transform is a suitable solution of the confluent hypergeometric equation.
Key words and phrases: confluent Heun equation, apparent singularity, integral transform, monodromy.
Received: 30.09.2014
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 214, Issue 3, Pages 268–276
DOI: https://doi.org/10.1007/s10958-016-2776-3
Bibliographic databases:
Document Type: Article
UDC: 550.24
Language: Russian
Citation: A. Ya. Kazakov, “Integral symmetry for the confluent Heun equation with added apparent singularity”, Mathematical problems in the theory of wave propagation. Part 44, Zap. Nauchn. Sem. POMI, 426, POMI, St. Petersburg, 2014, 34–48; J. Math. Sci. (N. Y.), 214:3 (2016), 268–276
Citation in format AMSBIB
\Bibitem{Kaz14}
\by A.~Ya.~Kazakov
\paper Integral symmetry for the confluent Heun equation with added apparent singularity
\inbook Mathematical problems in the theory of wave propagation. Part~44
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 426
\pages 34--48
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6030}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3485304}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 214
\issue 3
\pages 268--276
\crossref{https://doi.org/10.1007/s10958-016-2776-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960397224}
Linking options:
  • https://www.mathnet.ru/eng/znsl6030
  • https://www.mathnet.ru/eng/znsl/v426/p34
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :73
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024