Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 425, Pages 117–136 (Mi znsl6024)  

This article is cited in 7 scientific papers (total in 7 papers)

On the mathematical analysis of thick fluids

J.-F. Rodrigues

CMAF/FCUL, University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal
Full-text PDF (254 kB) Citations (7)
References:
Abstract: In chemical engineering models, shear-thickening or dilatant fluids converge in the limit case to a class of incompressible fluids with a maximum admissible shear rate, the so-called thick fluids. These non-Newtonian fluids may be obtained, in particular, as the power limit of Ostwald-de Waele fluids, and may be formulated as a new class of evolution variational inequalities, in which the shear rate is bounded by a positive constant or, more generally, by a bounded positive function. We prove the existence, uniqueness and continuous dependence of solutions to this general class of thick fluids with variable threshold on the absolute value of the deformation rate tensor, which solutions belong to a time dependent convex set. For sufficiently large viscosity, we also show the asymptotic stabilization towards the unique steady state.
Key words and phrases: shear-thickening fluids, existence, uniqueness.
Received: 01.08.2014
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 210, Issue 6, Pages 835–848
DOI: https://doi.org/10.1007/s10958-015-2594-z
Bibliographic databases:
Document Type: Article
UDC: 517
Language: English
Citation: J.-F. Rodrigues, “On the mathematical analysis of thick fluids”, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Zap. Nauchn. Sem. POMI, 425, POMI, St. Petersburg, 2014, 117–136; J. Math. Sci. (N. Y.), 210:6 (2015), 835–848
Citation in format AMSBIB
\Bibitem{Rod14}
\by J.-F.~Rodrigues
\paper On the mathematical analysis of thick fluids
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~44
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 425
\pages 117--136
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6024}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 210
\issue 6
\pages 835--848
\crossref{https://doi.org/10.1007/s10958-015-2594-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944706138}
Linking options:
  • https://www.mathnet.ru/eng/znsl6024
  • https://www.mathnet.ru/eng/znsl/v425/p117
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:195
    Full-text PDF :47
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024