Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 425, Pages 86–98 (Mi znsl6022)  

This article is cited in 8 scientific papers (total in 8 papers)

On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with self-similar generalized Cantor type weight

N. V. Rastegaevab

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (214 kB) Citations (8)
References:
Abstract: Spectral asymptotics of the weighted Neumann problem for the Sturm–Liouville equation is considered. The weight is assumed to be the distributional derivative of a self-similar generalized Cantor type function. The spectrum is shown to have a periodicity property for a wide class of Cantor type self-similar functions. The weaker “quasi-periodicity” property is demonstrated under certain mixed boundary value conditions. This allows for a more precise description of the main term of the eigenvalue counting function asymptotics. Previous results by A. A. Vladimirov and I. A. Sheipak are generalized.
Key words and phrases: self-similar measures, spectral asymptotics, spectral periodicity, spectral quasi-periodicity.
Received: 05.08.2014
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 210, Issue 6, Pages 814–821
DOI: https://doi.org/10.1007/s10958-015-2592-1
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: N. V. Rastegaev, “On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with self-similar generalized Cantor type weight”, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Zap. Nauchn. Sem. POMI, 425, POMI, St. Petersburg, 2014, 86–98; J. Math. Sci. (N. Y.), 210:6 (2015), 814–821
Citation in format AMSBIB
\Bibitem{Ras14}
\by N.~V.~Rastegaev
\paper On spectral asymptotics of the Neumann problem for the Sturm--Liouville equation with self-similar generalized Cantor type weight
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~44
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 425
\pages 86--98
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6022}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 210
\issue 6
\pages 814--821
\crossref{https://doi.org/10.1007/s10958-015-2592-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944711903}
Linking options:
  • https://www.mathnet.ru/eng/znsl6022
  • https://www.mathnet.ru/eng/znsl/v425/p86
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:321
    Full-text PDF :70
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024