Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 425, Pages 7–34 (Mi znsl6018)  

This article is cited in 5 scientific papers (total in 5 papers)

Estimates of the distance to the exact solution of parabolic problems based on local Poincaré type inequalities

S. Matculevichab, S. Repina

a St. Petersburg Department of the Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, 191023, St. Petersburg, Russia
b University of Jyváskylá, Finland
Full-text PDF (282 kB) Citations (5)
References:
Abstract: The goal of the paper is to derive two-sided bounds of the distance between the exact solution of the evolutionary reaction-diffusion problem with mixed Dirichlet–Robin boundary conditions and any function in the admissible energy space. The derivation is based upon special transformations of the integral identity, that defines the generalized solution. In order to obtain estimates with easily computable local constants we exploit classical Poincaré inequalities and Poincaré type inequalities for functions with zero mean boundary traces. The corresponding constants are estimated in [10] and [8]. Bounds of the distance to the exact solution contain only these constants associated with subdomains. It is proved that the bounds are equivalent to the energy norm of the error.
Key words and phrases: parabolic equations, Poincare type inequalities, a posteriori estimates.
Received: 02.08.2014
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 210, Issue 6, Pages 759–778
DOI: https://doi.org/10.1007/s10958-015-2588-x
Bibliographic databases:
Document Type: Article
UDC: 517
Language: English
Citation: S. Matculevich, S. Repin, “Estimates of the distance to the exact solution of parabolic problems based on local Poincaré type inequalities”, Boundary-value problems of mathematical physics and related problems of function theory. Part 44, Zap. Nauchn. Sem. POMI, 425, POMI, St. Petersburg, 2014, 7–34; J. Math. Sci. (N. Y.), 210:6 (2015), 759–778
Citation in format AMSBIB
\Bibitem{MatRep14}
\by S.~Matculevich, S.~Repin
\paper Estimates of the distance to the exact solution of parabolic problems based on local Poincar\'e type inequalities
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~44
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 425
\pages 7--34
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6018}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 210
\issue 6
\pages 759--778
\crossref{https://doi.org/10.1007/s10958-015-2588-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944699042}
Linking options:
  • https://www.mathnet.ru/eng/znsl6018
  • https://www.mathnet.ru/eng/znsl/v425/p7
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:254
    Full-text PDF :51
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024