Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 424, Pages 5–32 (Mi znsl6008)  

This article is cited in 1 scientific paper (total in 1 paper)

Operator Lipschitz functions in several variables and Möbius transformations

A. B. Aleksandrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (319 kB) Citations (1)
References:
Abstract: It is proved that if $f$ is an operator Lipschitz function defined on $\mathbb R^n$, then the function $\dfrac{f\circ\varphi}{\|\varphi'\|}$ is also operator Lipschitz for every Möbius transformations $\varphi$ with $f(\varphi(\infty))=0$. Here $\|\varphi'\|$ denotes the operator norm of the Jacobian matrix $\varphi'$.
Similar statements are obtained also for operator Lipschitz functions defined on closed subsets of $\mathbb R^n$.
Key words and phrases: operator Lipschitz functions.
Received: 27.05.2014
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 209, Issue 5, Pages 665–682
DOI: https://doi.org/10.1007/s10958-015-2520-4
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. B. Aleksandrov, “Operator Lipschitz functions in several variables and Möbius transformations”, Investigations on linear operators and function theory. Part 42, Zap. Nauchn. Sem. POMI, 424, POMI, St. Petersburg, 2014, 5–32; J. Math. Sci. (N. Y.), 209:5 (2015), 665–682
Citation in format AMSBIB
\Bibitem{Ale14}
\by A.~B.~Aleksandrov
\paper Operator Lipschitz functions in several variables and M\"obius transformations
\inbook Investigations on linear operators and function theory. Part~42
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 424
\pages 5--32
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6008}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3481443}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 209
\issue 5
\pages 665--682
\crossref{https://doi.org/10.1007/s10958-015-2520-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84956794422}
Linking options:
  • https://www.mathnet.ru/eng/znsl6008
  • https://www.mathnet.ru/eng/znsl/v424/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :65
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024